首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales
【2h】

PNAS Plus: Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales

机译:PNAS Plus:实验室和现场调查相结合解决了微生物相互作用这些相互作用是水力压裂页岩持久性的基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydraulic fracturing is one of the industrial processes behind the surging natural gas output in the United States. This technology inadvertently creates an engineered microbial ecosystem thousands of meters below Earth’s surface. Here, we used laboratory reactors to perform manipulations of persisting shale microbial communities that are currently not feasible in field scenarios. Metaproteomic and metabolite findings from the laboratory were then corroborated using regression-based modeling performed on metagenomic and metabolite data from more than 40 produced fluids from five hydraulically fractured shale wells. Collectively, our findings show that Halanaerobium, Geotoga, and Methanohalophilus strain abundances predict a significant fraction of nitrogen and carbon metabolites in the field. Our laboratory findings also exposed cryptic predatory, cooperative, and competitive interactions that impact microorganisms across fractured shales. Scaling these results from the laboratory to the field identified mechanisms underpinning biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy yields and inform management practices in hydraulically fractured shales.
机译:水力压裂是美国天然气产量猛增背后的工业过程之一。这项技术无意间在地球表面以下数千米处创建了一个工程微生物生态系统。在这里,我们使用实验室反应堆来对持久存在的页岩微生物群落进行操作,而这些操作在现场方案中目前尚不可行。然后,使用基于回归的建模方法对实验室的代谢组学和代谢物发现进行了证实,该建模方法基于来自五个水力压裂页岩井的40多种采出液的宏基因组学和代谢物数据。总体而言,我们的发现表明,嗜盐气单胞菌,Geotoga和嗜甲烷嗜盐菌的丰度预测该领域氮和碳代谢产物的比例很大。我们的实验室研究结果还揭示了影响裂缝页岩中微生物的隐秘捕食,合作和竞争相互作用。将这些结果从实验室扩展到现场,可以确定支撑生物地球化学反应的机制,从而可以利用这些知识来潜在地提高能源产量,并为水力压裂页岩的管理实践提供依据。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号