首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Solving a Levinthals paradox for virus assembly identifies a unique antiviral strategy
【2h】

Solving a Levinthals paradox for virus assembly identifies a unique antiviral strategy

机译:解决Levinthal的病毒装配悖论可确定独特的抗病毒策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the important puzzles in virology is how viruses assemble the protein containers that package their genomes rapidly and efficiently in vivo while avoiding triggering their hosts’ antiviral defenses. Viral assembly appears directed toward a relatively small subset of the vast number of all possible assembly intermediates and pathways, akin to Levinthal’s paradox for the folding of polypeptide chains. Using an in silico assembly model, we demonstrate that this reduction in complexity can be understood if aspects of in vivo assembly, which have mostly been neglected in in vitro experimental and theoretical modeling assembly studies, are included in the analysis. In particular, we show that the increasing viral coat protein concentration that occurs in infected cells plays unexpected and vital roles in avoiding potential kinetic assembly traps, significantly reducing the number of assembly pathways and assembly initiation sites, and resulting in enhanced assembly efficiency and genome packaging specificity. Because capsid assembly is a vital determinant of the overall fitness of a virus in the infection process, these insights have important consequences for our understanding of how selection impacts on the evolution of viral quasispecies. These results moreover suggest strategies for optimizing the production of protein nanocontainers for drug delivery and of virus-like particles for vaccination. We demonstrate here in silico that drugs targeting the specific RNA–capsid protein contacts can delay assembly, reduce viral load, and lead to an increase of misencapsidation of cellular RNAs, hence opening up unique avenues for antiviral therapy.
机译:病毒学的重要难题之一是病毒如何在体内快速有效地组装蛋白质容器,以包装其基因组,同时避免触发宿主的抗病毒防御。病毒组装似乎是针对所有可能的组装中间体和途径中相对较小的一部分,类似于莱文塔尔关于多肽链折叠的悖论。使用计算机模拟装配模型,我们证明,如果分析中包括体内装配的各个方面(通常在体外实验和理论建模装配研究中被忽略),则可以理解这种复杂性的降低。特别是,我们显示出感染细胞中病毒外壳蛋白浓度的增加在避免潜在的动力学装配陷阱,显着减少装配途径和装配起始位点的数量以及提高装配效率和基因组包装方面起着意想不到的重要作用特异性。由于衣壳组装是病毒在感染过程中整体适应性的重要决定因素,因此这些见解对我们了解选择如何影响准类病毒的进化具有重要意义。这些结果还提出了优化用于药物递送的蛋白质纳米容器和用于疫苗接种的病毒样颗粒的生产的策略。我们在计算机上证明了靶向特定RNA-衣壳蛋白接触的药物可以延迟组装,降低病毒载量,并导致细胞RNA的错误衣壳化增加,从而为抗病毒治疗开辟了独特的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号