首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis
【2h】

Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis

机译:色氨酸199的诱变表明跳跃是依赖MauG的色氨酸色氨酸醌生物合成所必需的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The diheme enzyme MauG catalyzes the posttranslational modification of the precursor protein of methylamine dehydrogenase (preMADH) to complete biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Catalysis proceeds through a high valent bis-Fe(IV) redox state and requires long-range electron transfer (ET), as the distance between the modified residues of preMADH and the nearest heme iron of MauG is 19.4 Å. Trp199 of MauG resides at the MauG-preMADH interface, positioned midway between the residues that are modified and the nearest heme. W199F and W199K mutations did not affect the spectroscopic and redox properties of MauG, or its ability to stabilize the bis-Fe(IV) state. Crystal structures of complexes of W199F/K MauG with preMADH showed no significant perturbation of the MauG-preMADH structure or protein interface. However, neither MauG variant was able to synthesize TTQ from preMADH. In contrast, an ET reaction from diferrous MauG to quinone MADH, which does not require the bis-Fe(IV) intermediate, was minimally affected by the W199F/K mutations. W199F/K MauGs were able to oxidize quinol MADH to form TTQ, the putative final two-electron oxidation of the biosynthetic process, but with kcat/Km values approximately 10% that of wild-type MauG. The differential effects of the W199F/K mutations on these three different reactions are explained by a critical role for Trp199 in mediating multistep hopping from preMADH to bis-Fe(IV) MauG during the long-range ET that is required for TTQ biosynthesis.
机译:双血红素酶MauG催化甲胺脱氢酶(preMADH)的前体蛋白质的翻译后修饰,以完成其蛋白质衍生色氨酸色氨酸醌(TTQ)辅因子的生物合成。催化过程通过高价的双Fe(IV)氧化还原态进行,需要长距离电子转移(ET),因为preMADH的修饰残基与最近的MauG血红素铁之间的距离为19.4Å。 MauG的Trp199位于MauG-preMADH界面,位于修饰的残基和最近的血红素之间。 W199F和W199K突变不影响MauG的光谱和氧化还原特性,也不影响其稳定bis-Fe(IV)状态的能力。 W199F / K MauG与preMADH的复合物的晶体结构未显示MauG-preMADH结构或蛋白质界面的显着扰动。但是,两种MauG变体均不能从preMADH合成TTQ。相反,不需要双-Fe(IV)中间体的二铁MauG与醌MADH的ET反应受W199F / K突变的影响最小。 W199F / K MauGs能够氧化喹诺醇MADH形成TTQ,这是生物合成过程的最终最终两电子氧化,但kcat / Km值约为野生型MauG的10%。 W199F / K突变对这三个不同反应的不同影响可以通过Trp199在TTQ生物合成所需的长程ET介导从preMADH到bis-Fe(IV)MauG的多步跳跃中的关键作用来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号