首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR
【2h】

Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR

机译:通过定点旋转标记和脉冲EPR探测肌球蛋白II中肌动蛋白结合的裂隙闭合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a structurally dynamic model for nucleotide- and actin-induced closure of the actin-binding cleft of myosin, based on site-directed spin labeling and electron paramagnetic resonance (EPR) in Dictyostelium myosin II. The actin-binding cleft is a solvent-filled cavity that extends to the nucleotide-binding pocket and has been predicted to close upon strong actin binding. Single-cysteine labeling sites were engineered to probe mobility and accessibility within the cleft. Addition of ADP and vanadate, which traps the posthydrolysis biochemical state, influenced probe mobility and accessibility slightly, whereas actin binding caused more dramatic changes in accessibility, consistent with cleft closure. We engineered five pairs of cysteine labeling sites to straddle the cleft, each pair having one label on the upper 50-kDa domain and one on the lower 50-kDa domain. Distances between spin-labeled sites were determined from the resulting spin–spin interactions, as measured by continuous wave EPR for distances of 0.7–2 nm or pulsed EPR (double electron–electron resonance) for distances of 1.7–6 nm. Because of the high distance resolution of EPR, at least two distinct structural states of the cleft were resolved. Each of the biochemical states tested (prehydrolysis, posthydrolysis, and rigor), reflects a mixture of these structural states, indicating that the coupling between biochemical and structural states is not rigid. The resulting model is much more dynamic than previously envisioned, with both open and closed conformations of the cleft interconverting, even in the rigor actomyosin complex.
机译:我们提出了一种结构动力学模型,用于基于肌球蛋白肌球蛋白II的定点自旋标记和电子顺磁共振(EPR)的肌球蛋白肌动蛋白结合裂的核苷酸和肌动蛋白诱导的闭合。肌动蛋白结合裂口是一个充满溶剂的空腔,延伸至核苷酸结合袋,并已被预测在强肌动蛋白结合后会闭合。设计了单半胱氨酸标记位点,以探查裂隙内的活动性和可及性。捕获水解后生化状态的ADP和钒酸盐的加入对探针的迁移率和可及性产生了轻微影响,而肌动蛋白结合导致可及性发生了更为显着的变化,这与closure裂闭合一致。我们设计了五对半胱氨酸标记位点以跨越裂隙,每对在上端50 kDa域上有一个标记,在下端50 kDa域上有一个标记。自旋标记位点之间的距离由产生的自旋-自旋相互作用确定,如通过连续波EPR测量0.7–2 nm的距离或脉冲EPR(双电子-电子共振)测量1.7–6 nm的距离。由于EPR的距离分辨率很高,因此解决了裂缝的至少两个不同的结构状态。测试的每个生物化学状态(水解前,水解后和严格)反映了这些结构状态的混合,表明生物化学状态和结构状态之间的耦合不是严格的。生成的模型比以前设想的要动态得多,即使在严格的放线菌素复合体中,也存在开裂和闭锁的裂隙互变构象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号