首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the CoverBioinorganic Chemistry Special Feature: Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral
【2h】

From the CoverBioinorganic Chemistry Special Feature: Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral

机译:来自CoverBioinorganicorganicchemistry的特色:具有离液剂的开放蛋白孔可增强铁蛋白生物矿物质中的铁还原和铁螯合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Iron is concentrated in ferritin, a spherical protein with a capacious cavity for ferric nanominerals of <4,500 Fe atoms. Global ferritin structure is very stable, resisting 6 M urea and heat (85°C) at neutral pH. Eight pores, each formed by six helices from 3 of the 24 polypeptide subunits, restrict mineral access to reductant, protons, or chelators. Protein-directed transport of Fe and aqueous Fe3+ chemistry (solubility ≈10−18 M) drive mineralization. Ferritin pores are “gated” based on protein crystals and Fe chelation rates of wild-type (WT) and engineered proteins. Pore structure and gate residues, which are highly conserved, thus should be sensitive to environmental changes such as low concentrations of chaotropes. We now demonstrate that urea or guanidine (1–10 mM), far below concentrations for global unfolding, induced multiphasic rate increases in Fe2+-bipyridyl formation similar to conservative substitutions of pore residues. Urea (1 M) or the nonconservative Leu/Pro substitution that fully unfolded pores without urea both induced monophasic rate increases in Fe2+ chelation rates, indicating unrestricted access between mineral and reductant/chelator. The observation of low-melting ferritin subdomains by CD spectroscopy (melting midpoint 53°C), accounting for 10% of ferritin α-helices, is unprecedented. The low-melting ferritin subdomains are pores, based on percentage helix and destabilization by either very dilute urea solutions (1 mM) or Leu/Pro substitution, which both increased Fe2+ chelation. Biological molecules may have evolved to control gating of ferritin pores in response to cell iron need and, if mimicked by designer drugs, could impact chelation therapies in iron-overload diseases.
机译:铁集中在铁蛋白中,铁蛋白是一种球形蛋白质,具有容纳<4,500 Fe原子的铁纳米矿物的宽敞空腔。整体铁蛋白结构非常稳定,在中性pH下可抵抗6 M尿素和热量(85°C)。八个孔(每个孔由来自24个多肽亚基中的三个的六个螺旋形成)将矿物质限制在还原剂,质子或螯合剂上。 Fe的蛋白质定向运输和Fe 3 + 水溶液的化学性质(溶解度≈10 −18 M)驱动矿化作用。铁蛋白孔是根据蛋白质晶体以及野生型(WT)和工程蛋白的铁螯合速率来“控制”的。高度保守的孔结构和门残留物应对环境变化敏感,例如离液剂浓度低。我们现在证明,尿素或胍(1-10 mM),远低于整体展开的浓度,引起Fe 2 + -联吡啶基形成的多相速率增加,类似于孔残基的保守取代。尿素(1 M)或非保守的Leu / Pro替代物完全打开了毛孔而没有尿素,都引起Fe 2 + 螯合速率的单相速率增加,表明矿物与还原剂/螯合剂之间的通道不受限制。通过CD光谱法(熔点中点53°C)观察低熔点铁蛋白亚域(占铁蛋白α螺旋的10%)是前所未有的。低熔点铁蛋白亚结构域是孔,基于螺旋百分比和非常稀的尿素溶液(1 mM)或Leu / Pro取代引起的失稳,这两者均增加了Fe 2 + 螯合。响应细胞铁的需要,生物分子可能已经进化为控制铁蛋白孔的门控,如果被设计药物模仿,可能会影响铁超载疾病的螯合疗法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号