首页> 美国卫生研究院文献>Polymers >Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications
【2h】

Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications

机译:基因治疗中的聚合物纳米颗粒:交付应用设计和优化的新途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.
机译:聚合物纳米颗粒的领域正在迅速扩展,并在电子,光子学,导电材料,传感器,医学,污染控制和环境技术等广泛领域中发挥着举足轻重的作用。在高分子聚合物在医学中的应用中,基因治疗已成为最先进的技术之一,具有应对近代疾病的能力。但是,与生命系统中的基因传递相关的一些障碍需要通过聚合物工程来缓解。最关键的挑战之一是运载工具或媒介的有效性。在最近的几十年中,非病毒递送系统由于其低毒性,靶向递送的潜力,长期稳定性,缺乏免疫原性和相对较低的生产成本而受到关注。 1987年,Felgner等人。首次使用基于阳离子脂质的非病毒基因递送系统。这一突破为其他非病毒载体(例如聚合物)打开了机会。阳离子聚合物由于其易于合成和灵活的特性,已成为非病毒基因递送系统的有希望的候选者。这些聚合物可以通过生理pH下的静电吸引与遗传物质结合,从而促进基因传递。许多因素影响阳离子聚合物的基因转染效率,包括其结构,分子量和表面电荷。在过去十年中出现的用于基因治疗的聚合物的杰出代表是合成聚合物,例如聚(L-赖氨酸),聚(L-鸟氨酸),直链和支链聚乙烯亚胺,二乙氨基乙基葡聚糖,聚(酰胺基胺)树状聚合物和聚(甲基丙烯酸二甲基氨基乙酯)。还探索了天然聚合物,如壳聚糖,右旋糖酐,明胶,支链淀粉和合成类似物,并具有诸如胍基化的生物可还原聚合物等复杂功能。这篇综述概述了聚合物在医学中的介绍,讨论了聚合物合成的方法,讨论了自上而下和自下而上的技术。还强调了用于治疗和制剂稳定性的功能化策略的评估。特性,挑战和功能化方法的概述,以及聚合物递送系统在基因治疗中的应用,最终标志着该评论是该领域发展的唯一一站式总结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号