首页> 美国卫生研究院文献>Polymers >Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites
【2h】

Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites

机译:碳纳米管与石墨烯纳米带:纳米填料几何形状对聚偏氟乙烯纳米复合材料电磁干扰屏蔽的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The similar molecular structure but different geometries of the carbon nanotube (CNT) and graphene nanoribbon (GNR) create a genuine opportunity to assess the impact of nanofiller geometry (tube vs. ribbon) on the electromagnetic interference (EMI) shielding of polymer nanocomposites. In this regard, GNR and its parent CNT were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a miniature melt mixer at various nanofiller loadings, i.e., 0.3, 0.5, 1.0 and 2.0 wt%, and then compression molded. Molecular simulations showed that CNT would have a better interaction with the PVDF matrix in any configuration. Rheological results validated that CNTs feature a far stronger network (mechanical interlocking) than GNRs. Despite lower powder conductivity and a comparable dispersion state, it was interestingly observed that CNT nanocomposites indicated a highly superior electrical conductivity and EMI shielding at higher nanofiller loadings. For instance, at 2.0 wt%, CNT/PVDF nanocomposites showed an electrical conductivity of 0.77 S·m−1 and an EMI shielding effectiveness of 11.60 dB, which are eight orders of magnitude and twofold higher than their GNR counterparts, respectively. This observation was attributed to their superior conductive network formation and the interlocking ability of the tubular nanostructure to the ribbon-like nanostructure, verified by molecular simulations and rheological assays.
机译:碳纳米管(CNT)和石墨烯纳米带(GNR)的相似分子结构但几何形状不同,为评估纳米填料几何形状(管对带)对聚合物纳米复合材料的电磁干扰(EMI)屏蔽的影响创造了真正的机会。就这一点而言,使用微型熔体混合器以各种纳米填料负载量,即0.3、0.5、1.0和2.0wt%,将GNR及其母体CNT与聚偏二氟乙烯(PVDF)基质熔融混合,然后压制成型。分子模拟表明,在任何配置下,CNT都能与PVDF基质更好地相互作用。流变学结果证实CNT比GNR具有更强的网络(机械互锁)。尽管粉末的电导率较低且分散状态相当,但有趣的是,CNT纳米复合材料在较高的纳米填料填充量下显示出极高的电导率和EMI屏蔽性能。例如,CNT / PVDF纳米复合材料在2.0 wt%时显示出0.77 S·m -1 的电导率和11.60 dB的EMI屏蔽效果,这是它们的八个数量级,是其两倍。 GNR同行。该观察结果归因于其优异的导电网络形成以及管状纳米结构与带状纳米结构的互锁能力,这已通过分子模拟和流变学测定得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号