首页> 美国卫生研究院文献>Plant Physiology >Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene
【2h】

Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene

机译:杨树叶片发射和不发射异戊二烯中的类异戊二烯生物合成代谢通量分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The plastidic 2-C-methyl-d-erythritol-4-phosphate () pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting () gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, leaves drastically reduced the overall carbon flux within the pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
机译:质体2-C-甲基-d-赤藓糖醇-4-磷酸()途径是植物中最重要的途径之一,可产生多种必需的类异戊二烯。但是,它的规则仍然不很了解。使用稳定的同位素 13 C标记技术,我们分析了在异戊二烯和转基因异戊二烯不释放()灰杨(Populus×canescens)中通过该途径进入主要质体类异戊二烯产品的碳通量。我们评估了对温度,光强度和大气[CO2]的依赖性。到目前为止,异戊二烯的生物合成是途径中间体的主要碳汇(99%),与异戊二烯排放几乎为零的叶片相比,异戊二烯的合成需要更高的碳通量。为了弥补对碳的低得多的需求,树叶大大减少了通路内的总碳通量。积累的塑性二甲基烯丙基二磷酸质对1-脱氧-d-木酮糖-5-磷酸合酶活性的反馈抑制作用几乎完全解释了碳通量的降低。我们的数据表明,质体二甲基烯丙基二磷酸酯酶对1-脱氧-d-木酮糖-5-磷酸合酶活性的短期生化反馈调节是该途径的重要调节机制。尽管从异戊二烯生物合成的大量碳需求中解脱了,但植物仅将节省的碳中约0.5%重定向至基本的非挥发性类异戊二烯,即β-胡萝卜素和叶黄素,最有可能弥补异戊二烯的缺乏及其抗氧化特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号