首页> 美国卫生研究院文献>Oncotarget >Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton helium- carbon- and oxygen ion beams
【2h】

Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton helium- carbon- and oxygen ion beams

机译:使用临床质子氦碳和氧离子束的高精度癌症粒子放射治疗的下一代多尺度生物物理表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy.
机译:世界范围内越来越多的粒子治疗设施标志着精确肿瘤学的新时代。迫切需要实施强大的生物物理读数来评估不同辐射质量的功效。这是关于蒙特卡洛模拟处方模型的四种剂量质量(即质子,氦,碳或氧离子)的预定剂量的蒙特卡罗模拟预测模型的生物物理评估的第一份报告,该技术使用了HIT的光栅扫描技术和临床治疗设置。在计算机模拟,物理剂量测定法和克隆形成的肿瘤细胞存活率之间发现了高度的一致性。细胞荧光离子跟踪混合检测器(Cell-Fit-HD)技术用于检测每个细胞核的粒子遍历。在一系列放射生物学研究中,例如晚期ROS积累和凋亡(胱天蛋白酶3/7激活),相对生物学有效性(RBE)主要与DNA双链断裂(DSB)形成的辐射物种特异性时空模式有关。并修复动力学。残余核γ-H2AX灶的大小和数量随线性能量转移(LET)和RBE的增加而增加,令人联想到DNA损伤复杂性的增强和不可修复DSB的积累。这些数据证实了复杂的DSB形成与细胞命运和细胞存活/ RBE的可靠生物学替代物的中心决定因素高度相关。本文介绍的新型临床质量光束的多尺度模拟,物理和放射生物学特性构成了开发高精度生物个体化放射疗法的第一步。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号