首页> 美国卫生研究院文献>Nanomaterials >Facile Strategy for the Synthesis of Gold@Silica Hybrid Nanoparticles with Controlled Porosity and Janus Morphology
【2h】

Facile Strategy for the Synthesis of Gold@Silica Hybrid Nanoparticles with Controlled Porosity and Janus Morphology

机译:孔隙度和Janus形貌可控的金@二氧化硅杂化纳米粒子合成的简便策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hybrid materials prepared by encapsulation of plasmonic nanoparticles in porous silica systems are of increasing interest due to their high chemical stability and applications in optics, catalysis and biological sensing. Particularly promising is the possibility of obtaining gold@silica nanoparticles (Au@SiO2 NPs) with Janus morphology, as the induced anisotropy can be further exploited to achieve selectivity and directionality in physical interactions and chemical reactivity. However, current methods to realise such systems rely on the use of complex procedures based on binary solvent mixtures and varying concentrations of precursors and reaction conditions, with reproducibility limited to specific Au@SiO2 NP types. Here, we report a simple one-pot protocol leading to controlled crystallinity, pore order, monodispersity, and position of gold nanoparticles (AuNPs) within mesoporous silica by the simple addition of a small amount of sodium silicate. Using a fully water-based strategy and constant content of synthetic precursors, cetyl trimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS), we prepared a series of four silica systems: (A) without added silicate, (B) with added silicate, (C) with AuNPs and without added silicate, and (D) with AuNPs and with added silicate. The obtained samples were characterised by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and UV-visible spectroscopy, and kinetic studies were carried out by monitoring the growth of the silica samples at different stages of the reaction: 1, 10, 15, 30 and 120 min. The analysis shows that the addition of sodium silicate in system B induces slower MCM-41 nanoparticle (MCM-41 NP) growth, with consequent higher crystallinity and better-defined hexagonal columnar porosity than those in system A. When the synthesis was carried out in the presence of CTAB-capped AuNPs, two different outcomes were obtained: without added silicate, isotropic mesoporous silica with AuNPs located at the centre and radial pore order (C), whereas the addition of silicate produced Janus-type Au@SiO2 NPs (D) in the form of MCM-41 and AuNPs positioned at the silica–water interface. Our method was nicely reproducible with gold nanospheres of different sizes (10, 30, and 68 nm diameter) and gold nanorods (55 × 19 nm), proving to be the simplest and most versatile method to date for the realisation of Janus-type systems based on MCM-41-coated plasmonic nanoparticles.
机译:通过将等离激元纳米粒子封装在多孔二氧化硅系统中制备的杂化材料由于其高化学稳定性以及在光学,催化和生物传感中的应用而受到越来越多的关注。特别有希望的是获得具有Janus形态的金纳米二氧化硅(Au @ SiO2 NPs)的可能性,因为可以进一步利用诱导的各向异性来实现物理相互作用和化学反应性的选择性和方向性。然而,当前实现这种系统的方法依赖于基于二元溶剂混合物和变化的前体浓度和反应条件的复杂程序的使用,其再现性限于特定的Au @ SiO2 NP类型。在这里,我们报告了一种简单的一锅法方案,只需添加少量硅酸钠,即可控制结晶度,孔序,单分散性以及金纳米颗粒(AuNPs)在介孔二氧化硅中的位置。使用完全基于水的策略和恒定含量的合成前体,十六烷基三甲基溴化十六烷基铵(CTAB)和原硅酸四乙酯(TEOS),我们制备了一系列四个二氧化硅体系:(A)不添加硅酸盐,(B)添加硅酸盐, (C)具有AuNP且未添加硅酸盐,和(D)具有AuNP且已添加硅酸盐。通过透射电子显微镜(TEM),小角X射线散射(SAXS)和紫外可见光谱对获得的样品进行表征,并通过监测反应不同阶段的二氧化硅样品的生长来进行动力学研究: 1、10、15、30和120分钟。分析表明,在系统B中添加硅酸钠会导致MCM-41纳米颗粒(MCM-41 NP)的生长较慢,因此其结晶度和定义的六方柱状孔隙率均高于系统A。在存在CTAB封端的AuNPs的情况下,获得了两种不同的结果:不添加硅酸盐,各向同性的介孔二氧化硅,其中AuNPs位于中心和径向孔序(C),而硅酸盐的添加产生了Janus型Au @ SiO2 NPs(D )形式的MCM-41和AuNPs位于二氧化硅-水界面。我们的方法可以很好地重现不同大小(直径10、30和68 nm的金纳米球)和金纳米棒(55×19 nm)的重现性,被证明是迄今为止实现Janus型系统的最简单,最通用的方法基于MCM-41涂层的等离子纳米颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号