首页> 美国卫生研究院文献>Molecules >Sorption Structure and Dynamics of CO2 and Ethane in Silicalite at High Pressure: A Combined Monte Carlo and Molecular Dynamics Simulation Study
【2h】

Sorption Structure and Dynamics of CO2 and Ethane in Silicalite at High Pressure: A Combined Monte Carlo and Molecular Dynamics Simulation Study

机译:硅藻土中高压下CO2和乙烷的吸附结构和动力学:蒙特卡罗和分子动力学联合研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicalite is an important nanoporous material that finds applications in several industries, including gas separation and catalysis. While the sorption, structure, and dynamics of several molecules confined in the pores of silicalite have been reported, most of these studies have been restricted to low pressures. Here we report a comparative study of sorption, structure, and dynamics of CO2 and ethane in silicalite at high pressures (up to 100 bar) using a combination of Monte Carlo (MC) and molecular dynamics (MD) simulations. The behavior of the two fluids is studied in terms of the simulated sorption isotherms, the positional and orientational distribution of sorbed molecules in silicalite, and their translational diffusion, vibrational spectra, and rotational motion. Both CO2 and ethane are found to exhibit orientational ordering in silicalite pores; however, at high pressures, while CO2 prefers to reside in the channel intersections, ethane molecules reside mostly in the sinusoidal channels. While CO2 exhibits a higher self-diffusion coefficient than ethane at low pressures, at high pressures, it becomes slower than ethane. Both CO2 and ethane exhibit rotational motion at two time scales. At both time scales, the rotational motion of ethane is faster. The differences observed here in the behavior of CO2 and ethane in silicalite pores can be seen as a consequence of an interplay of the kinetic diameter of the two molecules and the quadrupole moment of CO2.
机译:硅沸石是一种重要的纳米多孔材料,可在包括气体分离和催化在内的多个行业中得到应用。虽然已经报道了局限在硅质岩孔隙中的几种分子的吸附,结构和动力学,但这些研究大多局限于低压。在这里,我们结合蒙特卡罗(MC)和分子动力学(MD)模拟,报告了在高压(最高100 bar)下硅质岩中CO2和乙烷的吸附,结构和动力学的比较研究。根据模拟的吸附等温线,硅质岩中吸附分子的位置和方向分布及其平移扩散,振动光谱和旋转运动,研究了两种流体的行为。发现二氧化碳和乙烷在硅质岩孔隙中均表现出定向有序性。但是,在高压下,尽管CO2倾向于留在通道交叉处,但乙烷分子主要留在正弦形通道中。在低压下,CO2的自扩散系数比乙烷高,而在高压下,CO2的扩散系数比乙烷慢。 CO2和乙烷都在两个时间尺度上显示出旋转运动。在两个时间尺度上,乙烷的旋转运动都更快。此处观察到的在硅质岩孔隙中CO2和乙烷行为的差异是两个分子的动力学直径和CO2的四极矩相互作用的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号