【2h】

Poster Session A

机译:海报会议A

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>A.1>Labeling of Peptide Fragmented Mass Spectra in Proteomic Studies>B. Gerrits1, C. Panse1, B. Bodenmiller2, and R. Schlapbach1>1UZH/ETH Functional Genomics Center, Zurich, Switzerland; 2IMSB/ETH, Zurich, SwitzerlandDue to the advent of accurate and fast sampling mass spectrometers, proteomic experiments often contain thousands of peptide fragmentation spectra. Although it is commonly accepted that no manual validation of individual spectra in such experiments is feasible, annotated spectra of the peptides assignments with their modifications are required for publication and reviewing purposes. Here we present an algorithm that greatly facilitates the visualisation of peptide fragmentation spectra and aides with the quality assessment of modification sites such as phosphorylation.The application has two inputs: 1) the Mascot dat-file including the Mascot modifications and 2) the assignment list containing the query number and peptide rank. In the first step using Perl, the application retrieves the peptide assignments and computes the theoretical fragments. These are then mapped to the peak list with the error margin specified during the initial search. During the second stage using R, two different heuristics can be chosen to calculate the appropriate text-labels and print the labelled spectra.To demonstrate the usefulness of the peakplot application we built a CGI based world wide web accessible userinterface. Also via this interface several data sets are available for testing. As datfile content based filtering aion score cut-off, peptide query hit selection, and a selection by peptide modification based on the mascot servermodification file are provided.As output on default four different colour schemes areprovided, as well as one multi panel plot, which provides additional graphics and statistics about the assigned peaklist.>A.2>Exact Quantification of Complex Protein Mixtures Using MeCAT—Metal Coded Tagging>R. Ahrends1, U. Bergmann1, S. Pieper1, B. Neumann2, C. Scheler2, and M. W. Linscheid1>1Humboldt-Universitaet zu Berlin, Germany; 2Proteome Factory AG, Berlin, GermanyQuantitative peptide and protein analysis is one of the most promising fields in modern life science. Besides stable isotope coded labeling, metal chelate complexes are an alternative tool for quantification. The development of metal-coded affinity tags (MeCAT) was aimed to provide a robust tool for the quantification of peptides and proteins by utilizing lanthanideharboring metal tags. It was shown that MeCAT is suited for relative quantification of proteins via standard mass spectrometric methods. The approach of tagging biomolecules with MeCAT offers the unique advantage of absolute quantification via inductively coupled plasma mass spectrometry (ICPMS), a well established technique for assessing concentrations down to low attomole ranges. Proteins and peptides are labeled by MeCAT reagents which contain an amino acid residue-reactive labeling group and an element tag loaded with a lanthanide ion. By using different lanthanides such as Lutetium, Holmium, Thulium and Terbium in the MeCAT reagent, multiplex experiments can be performed to analyze several protein samples simultaneously in a proteomic study.After MeCAT labeling peptides and proteins are separated by common chromatography or electrophoresis techniques and quantified by LC/ESI MS or Inductively Coupled Plasma Mass Spectrometry (ICPMS) detecting the amount of MeCAT metal as a measure for quantity of the protein. If required, proteins of interest are identified by nanoLC/ESI MSn.In this work we investigated the compatibility of MeCAT labeling to analysis workflows such as nano liquid chromato-graphy/electrospray ionization tandem mass spectrometry (nano-LC/ESI-MSn) and electrophoresis followed by FIA/ICPMS. Focus was given to the separation behavior of labeled peptides and proteins as well as the dynamic range of detection. Furthermore, we demonstrated that MeCAT complexes are stable under a variety of conditions and that by applying LC/ ESI-MS it is possible to cover a dynamic range of 2 orders of magnitude down to the low femtomole range with an average standard deviation below 15%.Next to the relative quantification pathway applying LC/ ESI-MS we also developed a two dimensional gel based separation system for MeCAT labeled proteins in combination with FIA/ICPMS for absolute quantification of proteinsWith the application of the MeCAT technique to a standard analysis scheme in proteomics, such as the investigation of heat induced expression of recombinant proteins in an Escherichia coli High Cell Density Culture (HCDC), we successfully addressed the suitability to utilize MeCAT on biological samples. Several regulated proteins were identified and quantified including the recombinant Aprotinin::β-galactosidase, heat shock proteins, aconitase, and oligopeptide binding protein. id="__p17">Besides the obtained relative quantification data, we were able to analyze the recombinant expressed pharmacological active protein Aprotinin (Aprotinin::²-galactosidase) on protein level in an absolute fashion by applying MeCAT-tags in combination with FIA/ICPMS and external calibration. For absolute quantification on the peptide level, metal-coded synthetic peptides which are quantified externally by FIA/ICPMS serve as internal standards in complex peptides mixtures obtained from tryptic proteolysis of biological samples. id="__p18">>A.3 id="__p19">>On the Reproducibility of a Fractionation Procedure for Fish Muscle Proteomics id="__p20">>P. Rodrigues1, T. Silva1, F. Jessen2, and J. Dias1 id="__p21">>1CCMAR, Universidade do Algarve, FCMA, Centro de Ciências do Mar do Algarve, Campus de Gambelas, Faro, Portugal; 2DTU Aqua, Institut for Akvatiske Ressourcer, Danmarks Tekniske Universitet, Lyngby, Denmark id="__p22">Sub-cellular fractionation procedures for muscle tissue have been used for some time in proteomics, easing analysis by reducing the number of proteins in a given extract (and therefore improving the dynamic range by allowing larger loads per protein). On the other hand, since it implies a greater number of sample processing steps than a whole extract, it is expected that some noise could be introduced by this fractionation procedure. id="__p23">The aim of this study was to assess if the amount of noise introduced by a muscle fractionation procedure was significant by comparing it to the baseline technical noise level inherent to 2DE runs, Indiana, USA order to determine if this fractionation method was valid for proteome analysis, using the gilthead seabream (Sparus aurata) as model. id="__p24">For the experiment, two groups of 5 gilthead seabreams each were subjected to distinct levels of pre-slaughter stress to assess its effects in flesh quality, having obtained three samples of the dorsal muscle from each (post-slaughter, pre-rigor and post-rigor) for a total of 30 samples. These samples were fractionated in five batches, taking care to avoid variable confounding, and separated by 2DE. id="__p25">The results obtained seem to indicate that the use of this fractionation procedure introduces a low amount of noise, due to the fact that samples fractionated in different batches have the same level of variation as two samples that were fractionated in the same batch. In addition, when attempting to cluster the samples using several different metrics, no grouping made a distinction between fractionation batches. id="__p26">This shows that this fractionation method can be useful for some proteomic studies involving muscle tissue, especially in cases where the quantity of low abundance proteins is important. id="__p27">>A.4 id="__p28">>Optimization of Peak Capacity in One and Two-Dimensional NanoLC id="__p29">>S. Eeltink, B. Dolman, R. Swart, and G. Tremintin id="__p30">>Dionex Corporation, Sunnyvale, CA id="__p31">To tackle contemporary proteomics samples, different approaches are available for the identification of proteins. In the bottomup approach, proteins are digested and the resulting peptides are separated by high performance liquid chromatography (HPLC). In one-dimensional (1-D) separations, column technology and operating conditions can be optimized to increase peak capacity, but can resolve only relatively simple peptides mixtures. Tryptic digestion of complex proteomics samples containing 1000 proteins can lead up to 50,000 peptides and require powerful separation techniques like multidimensional liquid chromatography (MDLC). id="__p32">To obtain the best compromise between peak capacity and analysis time in one-dimensional and two-dimensional liquid che4omatography (LC), column technology and operating condiotions were optimized. The effects of gradient time, flow rate, column temperature and column length were investigated in one-dimensional reverse phase (RP) gradient nano-LC, with the aim of maximizing the peak per unit of time for peptides separations. id="__p33">>A.5 id="__p34">>Improving the Utility of Electron-Transfer Dissociation id="__p35">>K. F. Medzihradszky, S. P. Salas-Castillo, and A. L. Burlingame id="__p36">>Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA id="__p37">Captured electron-triggered fragmentation produces almost exclusively peptide backbone cleavages, Indiana, USA form of c and z˙ fragments. Such “limited” fragmentation may be more beneficial for the characterization of longer sequences than CID. In addition, electron-transfer dissociation (ETD) may hold the key for the large scale, reliable site-assignment of such “fragile” post-translational modifications as phosphorylation and O-glycosylation. Evidence has been presented in the recent literature[1] that suggests that charge states equal to 3 or greater provide higher quality ETD spectra of peptides. In addition, it also has been reported that precursor ions below ∼ m/z 850 deliver the best results. In the present study we compare the ETD-based information obtained from digests generated with different sequence cleavage specificities. In addition, we report improved ETD results in conjuction with the charge-increasing derivatization of Cys-side-chains as well as carboxyl-groups. id="__p38">Support for this work was provided by the Bio-Organic Biomedical Mass Spectrometry Resource at UCSF (A. L. Burlingame, Director) through the Biomedical Research Technology Program of the NIH National Center for Research Resources, NIH NCRR P41RR001614. id="__p39">References id="__p40">1. Good, D. M., Wirtala, M., McAlister, G. C., and Coon, J. J. (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 6, 1942–1951. id="__p41">>A.6 id="__p42">>Enrichment and Characterization of Secreted Glycopeptides Bearing SA1-0Galβ1-3GalNAcα Structures id="__p43">>Z. Darula1, and K. F. Medzihradszky1,2 id="__p44">>1Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary; 2Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA id="__p45">The lack of consensus sequence, common core structure, and universal endoglycosidase for the release of O-linked oligosaccharides makes O-glycosylation more difficult to tackle than N-glycosylation. Structural elucidation by mass spectrometry is usually inconclusive as the CID spectra of most glycopeptides are dominated by carbohydrate-related fragments. In addition, O-linked structures also undergo a gas-phase rearrangement reaction that eliminates the sugar without leaving a telltale sign at its former attachment site. id="__p46">In the present study we used electron-transfer dissociation for the characterization of intact glycopeptides affinity-enriched from bovine serum. Some glycopeptide-containing fractions were analyzed also after exoglycosidase treatment. Reducing the size of the carbohydrate chain aided the identification of multiply modified species. id="__p47">We report the unambiguous identification of 21 novel glycosylation sites. We also detail the limitations of the current methods. id="__p48">This work was supported by Hungarian Science Foundation grants OTKA (to KFM) and by NIH grant NCRR P41RR001614 to the UCSF MS Facility (Director, A. L. Burlingame). id="__p49">>A.7 id="__p50">>Enrichment of O-GlcNAc Modified Proteins by the Periodate Oxidation – Hydrazide Resin Capture Approach id="__p51">>E. Klement1, Z. Lipinszky2, Z. Kupihar3, A. Udvardy2, and K. F. Medzihradszky1,4 id="__p52">>1Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary; 2Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary; 3Department of Medical Chemistry, University of Szeged, Szeged, Hungary; 4Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA id="__p53">O-GlcNAc is a post-translational modification found on serine and threonine residues of cytosolic and nuclear proteins. The modification is dynamic and occurs at substoichiometric levels, therefore enrichment is essential. The different strategies so far include chemoenzymatic labeling, beta-elimination of the sugar moiety and lectin weak affinity chromatography. Here, we present a novel enrichment strategy that is based on the periodate oxidation – hydrazide capture approach developed for N-linked glycoproteins. Because of the differences between the two types of carbohydrate modifications the oxidation and elution steps had to be modified. The enrichment protocol was optimized on a mixture of alpha-crystallin and BSA. Then the method was applied to the proteasome complex previously reported as O-GlcNAc modified [1]. Novel modification sites on proteins co-purifying with the proteasome complex will be presented. id="__p54">This work was supported by Hungarian Science Foundation grant OTKA (to KFM) and by NIH grant NCRR P41RR001614 to the UCSF MS Facility (Director, A. L. Burlingame). id="__p55">References id="__p56">1. Suümegi, M., Hunyadi-Gulyás, E., Medzihradszky, K. F., and Udvardy, A. (2003) 26S proteasome subunits are O-linked N-acetylglucosaminemodified in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 312, 1284–1289. id="__p57">>A.8 id="__p58">>Proteome Survey Using Affinity Proteomics and Mass Spectrometry id="__p59">>N. Olsson1, C. Wingren1, M. Mattsson2, P. James1, F. Nilsson2, and C. A. K. Borrebaeck1 id="__p60">>1Department of Immunotechnology, Lund University, Lund, Sweden; 2BioInvent International AB, Lund, Sweden id="__p61">Affinity proteomic methodologies, such as antibody-based microarrays, have shown great promise in several proteome expression profiling applications. The resolution of such proteome analyses is, however, directly related to the number of antibodies included on the array, which currently is a key bottleneck. Here, we present a conceptually new method, denoted Global Proteome Survey (GPS), based on combining the premium features of affinity proteomics and mass spectrometry. The approach will provide novel possibilities for targeting a significant fraction of a proteome in a specie independent manner still using a limited set of antibodies. To this end, we have designed a new class of antibodies, denoted context-independent motif specific (CIMS) antibodies. We have defined sets of short peptide motifs, 4 or 6 amino acids long, where each motif was present in up to a few hundred different proteins (using the human proteome as model system). In this manner, 200 antibodies, binding 50 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 10000 individual molecules, i.e. around 50% of the nonredundant human proteome. To date, we have successfully selected 91 CIMS antibodies against 27 motifs, using our human recombinant scFv antibody library, composed of 2 × 1010 members and microarray adapted by molecular design, as a renewable probe source. Next, the binders were immobilized in an array format, multiplexed plate format or column format and used to capture and enrich motifcarrying peptides from the digested (trypsinated) proteome(s). The captured peptides were then detected, identified and in some cases even quantified (label-free) using MS and tandem-MS based readout. In this study, we profiled human colon tissue extracts and mouse liver homogenates to demonstrate proof-of-concept of the method. The results showed that the CIMS antibodies were capable of binding and enriching numerous peptides (proteins) harboring the corresponding selection motif, even when targeting crude digests originating from different species. The CIMS antibodies were found to recognize a linear epitope composed of two to four conserved residues, while the identity of the neighboring residues was more flexible. Taken together, the GPS platform has the potential to become a key discovery technology for highthroughput analysis of complex proteomes in health and disease in a specie independent manner. id="__p62">>A.9 id="__p63">>Sampling the N-terminal Proteome of Human Serum and Plasma id="__p64">>P. Wildes1 and J. A. Wells1,2 id="__p65">>Departments of 1Pharmaceutical Chemistry and 2Cellular and Molecular Pharmacology, University of California, San Francisco, CA id="__p66">The N-terminal proteomes of serum and plasma are complex and diverse, due to the importance of limited proteolysis in many extracellular signaling pathways. We have developed a method for labeling and enrichment of N-terminal peptides based on specific biotinylation of N-terminal alpha amines using subtiligase, an engineered enzyme. We have employed this method to identify nearly 800 N-terminal peptides in over 200 proteins in human serum and plasma, ranging down to low nM concentrations. While many of these N-termini correspond to known proteolytic processing events (e.g. signal peptide removal, prohormone processing, coagulation or complement activation), nearly 75 percent correspond to exo- or endo-proteolytic cleavages that have not been reported previously. In addition to identifying previously unknown sites of proteolytic processing, N-terminal isolation also allows us to sample one or a few representative peptides from proteins in serum, dramatically reducing the complexity of the sample. The N-terminal peptides can serve as markers of proteolytic events, Oregon, USA surrogates of the intact protein abundance. We are currently developing methods for label-free quantitation of N-terminal peptides to investigate their potential utility as biomarkers. id="__p67">>A.10 id="__p68">>Profiling Cell Surface and Secreted Glycoproteins Isolated from Human Thyroid Cancer Cell Lines id="__p69">>T.-Y. Yen, N. Haste, A. Castanieto, A. Arcinas, and B. Macher id="__p70">>San Francisco State University, Department of Chemistry & Biochemistry, San Francisco, CA id="__p71">We have obtained proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using 2-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), Hürthle cell carcinoma (XTC-1), and metastases of follicular thyroid cancer (FTC-133, FTC-236 and FTC-238) were evaluated. On average more than 100 glycoproteins were identified per cell line, of which about 60 percent are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g. CD44 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in a specific thyroid cancer cell line. Based on the results obtained by mass spectrometry, a set of glycoprotein biomarker candidates for thyroid cancer is proposed. We are currently quantitatively comparing the relative abundance of a subset of the glycoproteins identified using a label-free quantification method. These results are being compared with quantifications done using antibodies to the glycoproteins. id="__p72">>A.11 id="__p73">>Chemical Cross-linking in Complex Mixtures id="__p74">>M. J. Trnka and A. L. Burlingame id="__p75">>Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA id="__p76">Many fundamental physiological processes are catalyzed by stable protein complexes (e.g. histone remodelling, mRNA splicing by the spliceosome, protein degradation by the proteosome, transit across the nuclear envelope by the nuclear pore complex, initiation of apoptosis). The compositions of these complexes have been intensively studied by immunoprecipitation and affinity purification methodologies combined with mass spectrometry. However, these methods remove all information concerning the spatial arrangement of the constituent proteins within a complex. Furthermore, x-ray structures of larger complexes are difficult to obtain. id="__p77">Chemical cross-linking reagents are used to preserve topographic information by inserting new covalent bonds between neighboring proteins of a complex. After tryptic digestion, the covalently joined peptides are identified by tandem mass spectrometry, and the sites of modification are used to infer proximity of the original proteins. id="__p78">Chemical cross-linking methodologies have suffered due to the low yields of true interpeptide cross-links relative to unmodified peptides and so called “dead-end” modified peptides, where only one of the two reactive moieties of the cross-linking reagent reacts with protein. This problem is inherent to all cross-linking reagents that employ activated esters, such as N-hydroxy succinimide esters, as reactive moieties, because succesful cross-linking must compete with hydrolysis. id="__p79">Here we present a cross-linking reaction and enrichment strategy that allows discrimination between “dead-end” modified peptides, cross-linked peptides, and unmodified peptides. We have synthesized a trifunctional cross-linking reagent which contains two electrophilic formyl groups and an alkyne moiety. The formyl groups react with lysine residues in the presence of a reducing agent via a reductive amination mechanism. “Dead-end” modified peptides therefore contain an aldehyde moiety that can be used as a chemical handle to deplete these peptides. id="__p80">Cross-linked peptides can then be enriched by Copper catalyzed Huisgen cylcoaddition of the alkyne handle with a cleavable azido-biotin reagent. id="__p81">This poster presents optimization of reaction conditions to effect this discrimination in both model proteins and in E. coli cell lysates. id="__p82">Research support was provided by the Bio-Organic Biomedical Mass Spectrometry Resource (A. L. Burlingame, Director) through the Biomedical Research Technology Program of the NIH National Center for Research Resources, NIH NCRR P41RR001614. id="__p83">>A.12 id="__p84">>Rapid MRM Assay Development Strategies — Intelligent Software and Acquisition Strategies for Highest Productivity id="__p85">>S. Mollah, M. M. Champion, and C. L. Hunter id="__p86">>Applied Biosystems, Foster City, CA id="__p87">Targeted peptide quantitation is a rapidly growing application within proteomics mass spectrometry due to its widespread utility in biomarker verification, protein/peptide confirmation and characterization, as well as pathway mapping. As more extensive protein panels need to be monitored in a targeted way across multiple samples, higher throughput is becoming essential. The need for rapid assay development, higher multiplexing and more robust assays are some of the key challenges. In this work, the combination of unique workflows on the hybrid triple quadrupole linear ion trap mass spectrometer and automated softwares, MRMPilot™ Software and MultiQuant™ Software, have been used to automate and simplify creation of highly multiplexed MRM assays. The complete workflow of taking proteomics discovery data, to refinement of MRM transitions, resulting in creation of a final MRM assay of >1000 MRM transitions can now take just a matter of days. id="__p88">In this study, E. coli samples grown in various growth conditions were used for analysis to illustrate the efficiency of the MRM assay development process. Labeling strategy using mTRAQ reagents Δ 0, Δ 4, and Δ 8 were used with one of the mTRAQ® reagent labeled sample acting as the internal standard (GIS). This provides an added improvement in the robustness of the assay development. This efficient workflow resulted in developing an MRM assay at a rate of ∼2 peptide/hr (∼48 peptide/day). This has reduced the time required for developing a large MRM assay from weeks to just a matter of days. All assay development/MRM refinement was done from biological matrix, no synthetic peptides are required for this assay development strategy, reducing overall project cost. id="__p89">>A.13 id="__p90">>Structural Proteins in the Complex Phage 201phi2-1 id="__p91">>S. Weintraub, J. A. Thomas, K. Hakala, P. Serwer, and S. C. Hardies id="__p92">>University of Texas Health Science Center, San Antonio, TX id="__p93">Tailed phages are bacterial viruses with a DNA genome in a protein head that is connected to a tail used to inject the DNA into a host cell. The wide variety of phage types and infective mechanisms are of interest for use as antibacterial agents. We isolated and sequenced the 316,674-bp genome of the unusual Pseudomonas chlororaphis phage 201phi2-1. Since the function of most of the 460 predicted encoded proteins could not be assigned by comparative methods, proteins identified by MS were used to supplement the informatics. An unprecedented number of virion proteins (88) were identified, with several of them (18) having been cleaved to more than one polypeptide. With the high sequence coverage and large number of semitryptic peptides that were found, we could define many of the polypeptide end points, and hence the cleavage motif of the prohead protease responsible for these cleavages. Most phages cleave the major capsid protein to enable capsid expansion during DNA packaging, accounting for one of the detected 201phi2-1 cleavages. The cleavage patterns were combined with informatic analysis to hypothesize what other maturation processes may be occurring in this phage. One of the cleaved proteins was found by customized profile building methods to be a distant homolog of the beta chain of RNA polymerase. After cleavage, the propeptide as well as the polymerase chain remained in the head. We hypothesize that the propeptide determines capsid localization and that cleavage releases the polymerase chain for injection into the cell. For one of the three RNAP subunits found in the virion, Mississippi, USA showed that there had been a selfsplicing intron. Most phages encode a scaffold protein around which the capsid assembles and is then cleaved during DNA entry and leaves the virion. Scaffold-like sequences were found in the N-terminal propeptides of a family of 6 capsid proteins for which the C-terminal domains were homologous and retained in the mature virion. The stoichiometry of the C-terminal domains within the virion was estimated by spectrum counting, and the mass of propeptides that had been released from the virion was subsequently estimated to be appropriate for the scaffold of a virion of this size. The retained C-terminal domains were presumed to compose the novel inner head body reported for this virus. Finally we sought to resolve a discrepancy by which plots of spectrum counts indicated substantial downgel smears inconsistent with the Coomassie profile. The peptide coverage in the downgel smears was consistent with a degree of nonspecific protein degradation. By comparison of spectrum counts with known stoichiometry of several virion proteins, a saturation effect was found which overestimates the amount of rare degraded species in each gel slice. Efforts are underway to include precursor ion intensities in these assessments as a way to more accurately determine the relative copy number of the 201phi2-1 structural proteins. id="__p94">>A.14 id="__p95">>A Quick Method for Differential PTM Analysis of Hypermodified Proteins by FTICR/ECD/MS/MS and Bioinformatics id="__p96">>F. Li1, S. Guan1, F. Chu2, R. Talroze1, and A. L. Burlingame1 id="__p97">>1Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA; 2College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH id="__p98">Mass Spectrometry has evolved to be the most powerful method for protein identification and characterization of protein covalent modifications. The nature and position of many protein post-translational modifications (PTM) can be identified and even quantified by recently developed mass spectrometry methods. Moreover, different from other methods, mass spectrometry can be employed to discover new proteins and new modifications on proteins. id="__p99">Despite the impressive progress of mass spectrometry in biological applications in the past decade, determination of post-translational modifications on proteins is far from being routine. Usually labor-intensive and time-consuming sample preparation step is required to enrich or isolate the modified species and success may not be guaranteed. Quick, easy and economical methods for differential PTM analysis without identifying each PTM on multiple samples for comparison are highly desired in many biological research fields. However, there is no such method reported in literature. Here, we present a method to address this unmet need. id="__p100">Histones are biologically important proteins with many modifications. Characterizing the modifications on histones is even more challenging than a regular PTM determination. Two Histone H4 samples from the wild type and a mutant of mouse embryonic stem cells were used to illustrate this method. Each of the two histone H4 samples was first directly infused to a FTICR mass spectrometer respectively as intact proteins. MS molecular profiles of all modified species can be obtained for each sample. All isomers with the same M/Z were further isolated from other species and subjected to MS/MS fragmentation by ECD. Multiple MS/MS spectra were accumulated to improve the signal to noise ratio of ECD spectra. id="__p101">A “search all possibility” algorithm was developed to match theoretical MS/MS isotope profiles of all the possible PTM combinations on the sequence to the experimental MS/MS peaks. All the matched experimental peaks are mapped on the sequence indicating numbers of PTMs and the mapping clearly illustrates the “segmental” PTM assignments. In addition, all the modified sequences were ranked in the order of the degree how well the theoretical peaks were matched with the experimental data. Such a list of the best matched modified sequences, combined with the segmental PTM assignments, was used to detect the differences between two samples without having to identify the individual PTM on each sample. The final results show that the nature of PTMs was the same for both samples while the abundances of some certain modified species were different in the detectable dynamic range. id="__p102">This method requires minimal sample preparation. Neither enzymatic digestion nor analytical separation of PTM variants is required. The difficulty of handling sample complexity is shifted from sample preparation to the MS/MS data analysis stage. id="__p103">This method can serve as a general screening method for detecting difference among biologically related samples such as (1) wild type and mutant, (2) normal and degraded, (3) healthy and disease samples and it is especially useful for those hypermodified proteins such as histones in a fast and high throughput way. id="__p104">This work is supported by the Bio-Organic Biomedical Mass Spectrometry Resource at UCSF (A. L. Burlingame, Director) through the Biomedical Research Technology Program of the NIH National Center for Research Resources, NIH Grants NCRR P41RR001614 and NCRR RR019934. id="__p105">>A.15 id="__p106">>Improved Data Mining by Using TPP-based Analysis Workflows for Searching MS/MS Data id="__p107">>A. Quandt1, L. Malstroem1, H. Lam2, D. Shteynberg3, and R. Aebersold1 id="__p108">>1Institute for Molecular Systems Biology, ETH Zurich, Switzerland; 2Department of Chemical and Biomolcular Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; 3Institute for Systems Biology, Seattle, WA id="__p109">The identification and characterisation of peptides from tandem mass spectrometry (MS/MS) data represents a critical aspect of proteomics. In the past, many software packages have been developed to tackle this problem. Beside the development of new analysis tools, recent publications describe also the pipelining of different search programs to increase the identification rate. Unfortunately, it remains still unclear for the practical user when to apply which software or parameter set to retrieve optimal results. Most people rely on the usage of a identification software what consequently often leads to a significant proportion of the experimental spectra which are not going to be identified. Hence, the usage of different tools and parameter combinations is crucial but seldom approached in reality. Among other reasons such as manual result validation and the handling of various data formats, the main problem still remains in the automated combination of different identification tools. Here, we present a workflow approach which is based on the TransProteomicPipeline (Keller et al., 2005; Pedrioli et al., 2004) and combines multiple search tools and strategies with the result to retrieve a more complete list of peptide identifications and a higher protein coverage. For us, a workflow is the combination of various identification tools and search strategies in parallel and/or in sequential order. In the example workflow, we are going to present here, two classical search engines (X!Tandem and OMSSA) have been combined with a spectral library search search (SpectraST). In fact, we use the output of the first two search tools to dynamically create a spectral library which is searched afterwards. To compare the performance of our workflow with the results of the individual search engines, we used the 18-protein-mix dataset, which has been especially created to benchmark different search tools and pipelines. On these initial dataset, we are able to show that the combination of various identification tools in so-called workflows leads to an increased trust into the results by lowering the level of accepted false positives identifications and a significant increased protein coverage leading to a more reliable search results. id="__p110">>A.16 id="__p111">>Microwave-assisted Phosphoproteomics id="__p112">>P. Liu and W. Sandoval id="__p113">>Genentech, Inc., S. San Francisco, CA id="__p114">Reversible protein phosphorylation controls a multitude of important biological functions. Elucidation of the exact site of phosphorylation is often necessary to further understand the intricate mechanisms involved in intracellular sites. We have investigated the use of microwave enhanced tryptic digestions on phosphopeptide recovery. We have incorporated the use of stable isotopically labeled peptides to quantitate differences observed. In addition we have quantitatively evaluated the use of stabilizing chemical modification of phosphopeptides and phosphoproteins for subsequent analysis by mass spectrometry or Edman degradation. Finally we have applied our findings to a global phosphoproteomic analysis of peroxide treated cell lysate. id="__p115">>A.17 id="__p116">>Proteome Analysis of Apoplastic Proteins in Rice Shoot Respond to Salt Stress id="__p117">>Y. Song1, A. L. Burlingame2, and class="underline">Y. Guo1,2 id="__p118">>1Institute of Molecular and Cell Biology, Hebei Normal University, Shijiazhuang, China; 2Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA id="__p119">Plants have evolved sophisticated systems to cope with the adverse environmental conditions such as cold, drought and salinity due to their sessile nature. Although a lot of stress response networks have been proposed, the roles of plant apoplast have been obviously ignored in plant stress response. To investigate the role of apoplastic proteins in the salt-stress response, 10-day-old rice plants were treated with 200 mM NaCl for 1, 6 or 12 hours, and the soluble apoplast proteins were extracted and for differential analysis compared to untreated controls by 2-D DIGE saturation labeling techniques. 122 significant changed (1-ANOVA p-value <0.05) spots are identification by LC-MS/MS, and 117 spots representing 69 proteins have been identified. Of these, 37 proteins are apoplastic proteins according to bioinformatic analysis. These proteins are mostly involved in carbohydrate metabolism, oxido-reduction, protein processing and degradation. According to the results of functional categories and cluster analysis, a stress response model of apoplastic proteins has been proposed. These dates indicate that apoplast is an important portion in plant stress signal reception and response. id="__p120">LC-MS/MS data was provided by the Bio-Organic Biomedical Mass Spectrometry Resource at UCSF (A. L. Burlingame, Director) supported by the Biomedical Research Technology Program of the NIH National Center for Research Resources, NIH NCRR P41RR001614 and NIH NCRR RR019934. id="__p121">>A.18 id="__p122">>Investigation into the Use of Lys-N Combined with Electron Transfer Dissociation on a Quadrupole Time-of-Flight Mass Spectrometer for Peptide Sequencing id="__p123">> class="underline">J. Langridge1, J. Brown1, S. Mohammed2, N. Taouatas2, Iain D G Campuzano1, and A. J. R. Heck2 id="__p124">>1Waters Corporation, MS Technologies Center, Manchester, United Kingdom; 2Department of Biomolecular Mass Spectrometry, Utrecht University, Utrecht, The Netherlands id="__p125">Recently, Lys-N was introduced as a near ideal enzyme for proteomics workflows that involve electron transfer dissociation (ETD) or MALDI-CID. Lys-N peptides with a single basic residue, Indiana, USA combination with ETD, have a clear advantage for spectral interpretation due to peptide tandem mass spectra consisting of almost exclusively c-type fragment ions. Furthermore, the combination of Lys-N and SCX enables facile fractionation/enrichment of acetylated, phosphorylated peptides with a single basic residue and non-modified peptides with a single basic residue. Recently, we described the implementation of ETD on a Q-Tof instrument and we describe here the evaluation of the Lys-N strategy on this modified instrument. id="__p126">BSA was reduced with 45 mM dithiothreitol (50 °C, 15 min), followed by alkylation using 110 mM Iodoacetamide (dark, RT, 15min). Lys-N was added at a ratio of 1:85 (w/w) and incubated over night at 37 °C. Metalloendopeptidase from Grifola Frondosa (Lys-N) was obtained from Seikagaku Corporation (Tokyo, Japan). Doubly or triply charged precursor cations were selected by the quadrupole and allowed to mix and react with either fluoranthene or azobenzene reagent anions previously collected in the travelling wave ion guide (TWAVE) collision cell of the QTOF. Product ions spectra were recorded by the TOF mass analyzer. id="__p127" class="p p-last">We have acquired preliminary data using electron transfer dissociation (ETD) on a modified hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer (Q-Tof). Several peptides from a Lys-N digest of bovine serum albumin (BSA) have initially been investigated. A variety of the peptides from the digest were selected with the quadrupole, prior to dissociation via electron transfer from the reagent anion. For the doubly charged precursors the MS/MS data acquired show almost exclusively c-ions, these being N-terminal sequence related ions. Cleavage was observed at almost every amide bond in the peptide backbone, yielding easy-to-interpret sequence ladders. This coupled with the inherent mass measurement accuracy and resolution of the oa-TOF mass analyser makes the data easily amenable to de novo sequencing. The signal intensity of the fragment ions seemed to diminish with decreasing m/z, as previously reported. In addition to the ETD experiments the mass spectrometer can acquire alternate scans in CID, and as such data will be compared and contrasted between ETD and CID on a variety of peptides produced from Lys-N digestion and separated by nanoscale LC.
机译:> A.1 >蛋白质组学研究中肽片段质谱的标签 > B。 Gerrits 1 ,C.Panse 1 ,B.Bodenmiller 2 和R.Schlapbach 1 > 1 UZH / ETH功能基因组学中心,瑞士苏黎世; 2 IMSB / ETH,瑞士苏黎世由于精确而快速的采样质谱仪的出现,蛋白质组学实验通常包含成千上万的肽片段化光谱。尽管人们普遍认为在这种实验中手动验证单个光谱是不可行的,但为发布和审阅目的,需要对肽分配进行注释,并对其进行修饰。在这里,我们提出了一种算法,通过修饰位点(例如磷酸化)的质量评估,极大地方便了肽片段光谱和辅助剂的可视化。该应用程序有两个输入:1)Mascot dat文件,包括Mascot修饰和2)分配列表包含查询编号和肽段排名。在使用Perl的第一步中,该应用程序检索肽分配并计算理论片段。然后将它们映射到峰列表,并在初始搜索期间指定误差范围。在使用R的第二阶段中,可以选择两种不同的试探法来计算适当的文本标签并打印标记的光谱。为了证明peakplot应用程序的有用性,我们构建了一个基于CGI的万维网可访问用户界面。同样通过此接口,可以使用几个数据集进行测试。提供了基于datfile内容的过滤阴离子分数截止,肽段查询命中选择和基于吉祥物服务器修改文件的肽段修改选择。作为默认输出,提供了四种不同的配色方案以及一个多面板图,提供有关指定峰列表的其他图形和统计信息。> A.2 >使用MeCAT(金属编码标记) > R对复杂蛋白质混合物进行精确定量。 Ahrends 1 ,U。Bergmann 1 ,S。Pieper 1 ,B.Neumann 2 ,C.Scheler < sup> 2 和MW Linscheid 1 > 1 Humboldt-Universitaet zu Berlin,德国; 2 Proteome Factory AG,德国柏林肽和蛋白质定量分析是现代生命科学领域最有前途的领域之一。除了稳定的同位素编码标记外,金属螯合物还可以作为定量的替代工具。金属编码亲和标签(MeCAT)的开发旨在为利用利用镧系元素捕获的金属标签提供用于定量肽和蛋白质的强大工具。结果表明,MeCAT适用于通过标准质谱方法对蛋白质进行相对定量。用MeCAT标记生物分子的方法具有通过电感耦合等离子体质谱(ICPMS)进行绝对定量的独特优势,电感耦合等离子体质谱法(ICPMS)是一种公认​​的技术,可用于评估低至低原子浓度的浓度。蛋白和肽由MeCAT试剂标记,该试剂包含一个氨基酸残基反应性标记基团和一个载有镧系元素离子的元素标签。通过在MeCAT试剂中使用different 、,、 Th和Ter等镧系元素,可以进行多重实验以同时在蛋白质组学研究中分析多个蛋白质样品.MeCAT标记后的肽和蛋白质通过常规色谱或电泳技术分离并定量通过LC / ESI MS或电感耦合等离子体质谱法(ICPMS)检测MeCAT金属的量,以此作为蛋白质量的量度。如果需要,可以通过nanoLC / ESI MSn鉴定感兴趣的蛋白质。在这项工作中,我们研究了MeCAT标记与分析工作流程的兼容性,例如纳米液相色谱/电喷雾电离串联质谱法(nano-LC / ESI-MSn)和电泳,然后进行FIA / ICPMS。重点是标记肽和蛋白质的分离行为以及检测的动态范围。此外,我们证明了MeCAT配合物在各种条件下都是稳定的,并且通过应用LC / ESI-MS,有可能将2个数量级的动态范围降低到低飞m范围,平均标准偏差低于15%除了使用LC / ESI-MS的相对定量途径外,我们还开发了基于二维凝胶的MeCAT标记蛋白质分离系统,并结合了FIA / ICPMS对蛋白质进行绝对定量,并将MeCAT技术应用于标准分析方案中。蛋白质组学,例如在大肠杆菌高细胞密度培养(HCDC)中热诱导重组蛋白表达的研究,我们成功地解决了在生物样品上使用MeCAT的适用性。鉴定并定量了几种调控蛋白,包括重组抑肽酶::β-半乳糖苷酶,热休克蛋白,乌头酸酶和寡肽结合蛋白。 id =“ __ p17”>除获得的相对定量数据外,我们还能够分析重组蛋白通过将MeCAT标签与FIA / ICPMS和外部校准相结合,以绝对的方式在蛋白质水平上表达药理活性蛋白质抑肽酶(Aprotinin ::²-半乳糖苷酶)。为了在肽水平上进行绝对定量,通过FIA / ICPMS外部定量的金属编码合成肽用作从生物样品的胰蛋白酶解得到的复杂肽混合物中的内标。 id =“ __ p18”> < strong> A.3 id =“ __ p19”> >关于鱼肌肉蛋白质组学分级分离程序的可重复性 id =“ __ p20” > > P。 Rodrigues 1 ,T。Silva 1 ,F。Jessen 2 和J. Dias 1 id =“ __ p21”> > 1 CCMAR,阿尔加威大学,FCMA,Centro deCiênciasdo Mar do Algarve,加法拉斯校园,葡萄牙法鲁; 2 DTU Aqua,丹麦Lyngby的Danmarks Tekniske Universitet的Akvatiske资源研究所使用 id =“ __ p22”>已使用了肌肉组织的亚细胞分离程序在蛋白质组学上花费了一段时间,通过减少给定提取物中蛋白质的数量来简化分析(并因此通过允许每个蛋白质更大的负载来提高动态范围)。另一方面,由于这意味着比整个提取物要多的样品处理步骤,因此预计这种分馏过程可能会引入一些噪声。 id =“ __ p23”>这项研究是通过将肌肉分离程序引入的噪声量与美国印第安纳州2DE运行固有的基线技术噪声水平进行比较来评估该噪声量是否显着,从而确定该分离方法是否适用于使用银头的蛋白质组分析 id =“ __ p24”>为该实验,两组5只金头鲷分别接受不同水平的屠宰前压力以评估其对肉品质的影响,从每个(屠宰后,严紧前和严紧后)分别获得三个背肌样品,共30个样品。将这些样品分五批进行分馏,注意避免变量混淆,并用2DE进行分离。 id =“ __ p25”>获得的结果似乎表明,使用这种分馏程序会引入少量的噪声,因为不同批次分馏的样品具有与同一批次分馏的两个样品相同的变化水平。此外,当尝试使用几种不同的指标对样本进行聚类时,没有分组可以区分分离批次。 id =“ __ p26”>这表明,这种分离方法对于某些涉及肌肉的蛋白质组学研究可能是有用的组织,尤其是在低丰度蛋白质的数量很重要的情况下。 id =“ __ p27”> > A.4 id =“ __ p28”> < strong>一维和二维NanoLC的峰容量优化 id =“ __ p29”> > S。 Eeltink,B.Dolman,R.Swart和G.Tremintin id =“ __ p30”> > Dionex Corporation,加利福尼亚州桑尼维尔 id =“ __ p31”>要处理现代蛋白质组学样品,可以使用多种方法来鉴定蛋白质。在自下而上的方法中,将蛋白质消化,然后通过高效液相色谱(HPLC)分离得到的肽。在一维(1-D)分离中,可以优化色谱柱技术和操作条件以增加峰容量,但只能分离相对简单的肽混合物。对包含1000种蛋白质的复杂蛋白质组学样品进行胰蛋白酶消化可产生多达50,000个肽段,并需要强大的分离技术,例如多维液相色谱(MDLC)。 id =“ __ p32”>要在峰容量和分析之间取得最佳平衡在一维和二维液相色谱(LC)中,优化了色谱柱技术和操作条件。在一维反相(RP)梯度纳米LC中研究了梯度时间,流速,柱温和柱长的影响,目的是使肽分离的每单位时间的峰最大化。 < p id =“ __ p33”> > A.5 id =“ __ p34”> >提高电子传输解离的效用 id =“ __ p35”> > K。 F. Medzihradszky,S。P. Salas-Castillo和A. L. Burlingame id =“ __ p36”> >质谱仪,加利福尼亚大学,旧金山大学药物化学系,CA id =“ __ p37”>捕获的电子触发片段几乎只产生肽骨架裂解,这是美国印第安纳州c和z˙片段的形式。这样的“有限”片段化可能比CID更有益于更长序列的表征。此外,电子转移解离(ETD)可能是大规模,可靠地进行诸如磷酸化和O-糖基化等“脆弱”翻译后修饰的关键。最近的文献[1]中已有证据表明,等于或大于3的电荷态可提供更高质量的肽ETD光谱。此外,还据报道,低于约m / z 850的前体离子可提供最佳结果。在本研究中,我们比较了从具有不同序列切割特异性的酶切产物中获得的基于ETD的信息。此外,我们报告说,与Cys侧链和羧基的电荷增加衍生化相结合,ETD结果得到了改善。 id =“ __ p38”> Bio对此工作提供了支持-通过NIH国家研究资源中心的生物医学研究技术计划,在UCSF上获得的有机生物医学质谱资源(AL Burlingame,所长),NIH NCRR P41RR001614。 id =“ __ p39”>参考 id =“ __ p40”> 1。 Good,D.M.,Wirtala,M.,McAlister,G.C.和Coon,J.J.(2007)电子转移解离质谱的性能特征。大声笑细胞。蛋白质组学6,1942-1951。 id =“ __ p41”> > A.6 id =“ __ p42”> >分泌型糖肽的富集和表征轴承SA1-0Galβ1-3GalNAcα结构 id =“ __ p43”> > Z。 Darula 1 和KF Medzihradszky 1,2 id =“ __ p44”> > 1 匈牙利塞格德匈牙利科学院生物研究中心蛋白质组学研究组; 2 质谱仪,加利福尼亚大学旧金山分校药物化学系 id =“ __ p45”>缺少共有序列,共有核心结构,以及用于释放O-连接寡糖的通用内切糖苷酶,使得O-糖基化比N-糖基化更难解决。质谱分析的结构通常是不确定的,因为大多数糖肽的CID谱主要是与碳水化合物有关的片段。此外,O链结构还进行了气相重排反应,该反应消除了糖,而在其先前的附着位点上没有明显的信号。 id =“ __ p46”>在本研究中,我们使用了电子-转移解离用于表征从牛血清中亲和富集的完整糖肽。外切糖苷酶处理后,也分析了一些含糖肽的馏分。减少碳水化合物链的大小有助于鉴定多重修饰的物种。 id =“ __ p47”>我们报道了21个新糖基化位点的明确鉴定。我们还详细介绍了当前方法的局限性。 id =“ __ p48”>这项工作得到了匈牙利科学基金会授予OTKA(授予KFM)和NIH授予UCSF MS设施的NCRR P41RR001614(主任, AL Burlingame)。 id =“ __ p49”> > A.7 id =“ __ p50”> > O-GlcNAc修饰的蛋白通过高碘酸盐氧化–酰肼树脂捕获方法 id =“ __ p51”> > E。 Klement 1 ,Z.Lipinszky 2 ,Z.Kupihar 3 ,A.Udvardy 2 和KF Medzihradszky < sup> 1,4 id =“ __ p52”> > 1 蛋白质组学研究组,匈牙利科学院生物研究中心,匈牙利塞格德; 2 ,匈牙利塞格德,匈牙利科学院生物研究中心,生物化学研究所; 3 匈牙利塞格德塞格德大学医学化学系; 4 质谱仪,加利福尼亚大学旧金山分校药物化学系 id =“ __ p53”> O-GlcNAc是翻译后修饰在胞浆和核蛋白的丝氨酸和苏氨酸残基上发现。该修饰是动态的并且发生在化学计量以下的水平,因此富集是必不可少的。迄今为止,不同的策略包括化学酶标记,糖部分的β-消除和凝集素弱亲和层析。这里,我们提出了一种新的富集策略,该策略基于针对N联糖蛋白开发的高碘酸盐氧化-酰肼捕获方法。由于两种类型的碳水化合物修饰方法之间的差异,因此必须对氧化和洗脱步骤进行修饰。在α-晶状体蛋白和BSA的混合物上优化了富集方案。然后将该方法应用于先前报道为O-GlcNAc修饰的蛋白酶体复合物[1]。将展示与蛋白酶体复合物共纯化的蛋白质上的新修饰位点。 id =“ __ p54”>这项工作得到匈牙利科学基金会授予OTKA(授予KFM)和NIH授予NCRR P41RR001614的支持。 UCSF MS Facility(董事,AL Burlingame)。 id =“ __ p55”>参考 id =“ __ p56”> 1。 Suümegi,M.,Hunyadi-Gulyás,E.,Medzihradszky,K.F.和Udvardy,A.(2003)26S蛋白酶体亚基是在果蝇中被O-连接的N-乙酰氨基葡糖修饰的。生化。生物物理学。 Res。公社312,1284–1289。 id =“ __ p57”> > A.8 id =“ __ p58”> >使用亲和蛋白质组学和质谱进行蛋白质组学调查光谱 id =“ __ p59”> > N。 Olsson 1 ,C.Wingren 1 ,M.Mattsson 2 ,P.James 1 ,F.Nilsson < sup> 2 和CAK Borrebaeck 1 id =“ __ p60”> > 1 免疫技术系,瑞典隆德隆德大学;瑞典隆德市的 2 BioInvent International AB id =“ __ p61”>亲和性蛋白质组学方法(例如基于抗体的微阵列)已在多种蛋白质组表达中显示出了广阔的前景分析应用程序。但是,这种蛋白质组分析的分辨率与阵列中包含的抗体数量直接相关,这是目前的关键瓶颈。在这里,我们结合亲和蛋白质组学和质谱学的高级功能,提出了一种概念上新的方法,称为全球蛋白质组学调查(GPS)。该方法将提供新的可能性,即仍然使用有限的一组抗体以物种独立的方式靶向蛋白质组的重要部分。为此,我们设计了一类新的抗体,称为上下文无关基序特异性(CIMS)抗体。我们定义了一组短肽基序,长度为4或6个氨基酸,其中每个基序存在于多达数百种不同的蛋白质中(使用人类蛋白质组作为模型系统)。以这种方式,结合通常在不同蛋白质中分布的50个不同基序的200种抗体将潜在地靶向10000个单个分子的蛋白质簇,即非冗余人蛋白质组的约50%。迄今为止,我们已成功利用我们的人类重组scFv抗体文库成功选择了针对27个基序的91种CIMS抗体,该文库由2×10 10 成员组成,并通过分子设计改进了微阵列作为可再生探针来源。接下来,将结合物以阵列形式,多重平板形式或柱形式固定,并用于从消化的(胰蛋白酶化的)蛋白质组中捕获和富集携带图案的肽。然后使用MS和基于串联MS的读数对捕获的肽进行检测,鉴定,甚至在某些情况下进行定量(无标记)。在这项研究中,我们分析了人结肠组织提取物和小鼠肝匀浆,以证明该方法的概念证明。结果表明,即使靶向不同物种的粗消化物,CIMS抗体也能够结合和富集带有相应选择基序的多种肽(蛋白质)。发现CIMS抗体识别由两个至四个保守残基组成的线性表位,而相邻残基的身份更灵活。综上所述,GPS平台有可能成为一种以物种独立的方式对健康和疾病中的复杂蛋白质组进行高通量分析的关键发现技术。 id =“ __ p62”> > A.9 < / strong> id =“ __ p63”> >采样人血清和血浆的N末端蛋白质组 id =“ __ p64”> > P。 Wildes 1 和JA Wells 1,2 id =“ __ p65”> > 1 药物化学和 2 细胞和分子药理学,加利福尼亚大学旧金山分校 id =“ __ p66”>血清和血浆的N端蛋白质组由于有限的蛋白水解在许多细胞外信号通路中的重要性,因此它们是复杂且多样的。我们开发了一种基于亚末端酶(一种工程化酶)的N末端α胺的特异性生物素化,用于标记和富集N末端肽的方法。我们已经使用这种方法在人血清和血浆中的200多种蛋白质中鉴定了将近800个N末端肽,低至低nM浓度。尽管这些N末端中的许多对应于已知的蛋白水解加工事件(例如信号肽去除,激素激素加工,凝血或补体激活),但将近75%对应于以前尚未报道的蛋白水解或内切蛋白切割。除了识别蛋白水解过程中以前未知的位点外,N端分离还使我们能够从血清中的蛋白质中采样一种或几种代表性的肽,​​从而大大降低了样品的复杂性。 N端肽可以用作蛋白水解事件的标志物,美国俄勒冈州替代了完整蛋白丰度。我们目前正在开发无标记的N末端肽定量方法,以研究其作为生物标记物的潜在用途。 id =“ __ p67”> > A.10 < p id =“ __ p68”> >从人甲状腺癌细胞系中分离出的细胞表面和分泌的糖蛋白分析 id =“ __ p69”> > T.-Y。 Yen,N. Haste,A。Castanieto,A。Arcinas和B. Macher id =“ __ p70”> >旧金山州立大学,旧金山化学与生物化学系,CA id =“ __ p71”>我们已经从代表各种滤泡细胞来源的甲状腺癌范围的各种甲状腺癌细胞系中获得了蛋白质组学概况。在这项研究中,我们用高碘酸盐氧化了分泌蛋白的碳水化合物和细胞表面的碳水化合物,并通过与酰肼树脂的共价偶联分离了它们。使用二维液相色谱-串联质谱结合气相分馏,从胰蛋白酶肽和从酰肼树脂释放的N-连接糖肽中鉴定出获得的糖蛋白。对源自乳头状甲状腺癌(TPC-1),Hürthle细胞癌(XTC-1)和滤泡性甲状腺癌转移灶(FTC-133,FTC-236和FTC-238)的甲状腺癌细胞系进行了评估。每个细胞系平均鉴定出100多种糖蛋白,其中约60%是已知的细胞表面或分泌的糖蛋白。鉴定糖蛋白(例如CD44和金属蛋白酶抑制剂1)的方法证实了鉴定甲状腺癌相关生物标志物的方法的有效性,这些糖蛋白已被发现是甲状腺癌的有用标志物。除了所有细胞系通常表达的糖蛋白外,我们还鉴定了仅在特定甲状腺癌细胞系中表达的其他糖蛋白。基于质谱分析的结果,提出了一套用于甲状腺癌的糖蛋白生物标志物候选物。我们目前正在定量比较使用无标记定量方法鉴定出的糖蛋白子集的相对丰度。将这些结果与使用糖蛋白抗体进行的定量进行比较。 id =“ __ p72”> > A.11 id =“ __ p73”> >复杂混合物中的化学交联 id =“ __ p74”> > M。 J. Trnka和AL Burlingame id =“ __ p75”> >质谱仪,加利福尼亚大学旧金山分校药物化学系 id =“ __ p76”>许多基本的生理过程都由稳定的蛋白质复合物催化(例如,组蛋白重塑,剪接体剪接mRNA,蛋白质体降解,核孔复合物穿过核膜,转运细胞凋亡) 。这些复合物的组成已通过免疫沉淀和亲和纯化方法结合质谱进行了深入研究。但是,这些方法删除了有关复合物中组成蛋白的空间排列的所有信息。此外,难以获得较大复合物的X射线结构。 id =“ __ p77”>化学交联剂用于通过在复合物的相邻蛋白质之间插入新的共价键来保存拓扑信息。胰蛋白酶消化后,通过串联质谱鉴定共价结合的肽,修饰位点用于推断原始蛋白的亲和力。 id =“ __ p78”>化学交联方法受到了严重影响相对于未修饰的肽和所谓的“末端”修饰的肽,真正的肽间交联的产率低,其中交联剂的两个反应性部分中只有一个与蛋白质反应。对于所有使用活化酯(例如N-羟基琥珀酰亚胺酯)作为反应性部分的交联试剂,此问题都是固有的,因为成功的交联必须与水解竞争。 id =“ __ p79”>此处我们提出了一种交联反应和富集策略,可区分“死端”修饰肽,交联肽和未修饰的肽。我们已经合成了包含两个亲电甲酰基和一个炔基部分的三官能交联剂。甲酰基在还原剂存在下通过还原胺化机制与赖氨酸残基反应。因此,“末端”修饰的肽包含一个醛基,可以用作化学处理以耗尽这些肽。 id =“ __ p80”>然后,铜催化的惠斯根环烷基加成反应可以富集交联的肽。 id =“ __ p81”>这张海报展示了反应条件的优化,以在模型蛋白和大肠杆菌细胞裂解物中实现这种区分。 > id =“ __ p82”>生物有机生物医学质谱资源(AL Burlingame,所长)通过美国国立卫生研究院国家研究资源中心的生物医学研究技术计划,NIH NCRR P41RR001614提供了研究支持。 id =“ __ p83”> > A.12 id =“ __ p84”> >快速的MRM分析开发策略-最高生产率的智能软件和采集策略 id =“ __ p85”> > S。 Mollah,MM冠军和CL Hunter id =“ __ p86”> >加利福尼亚州福斯特城的应用生物系统 id =“ __ p87”>靶向肽定量技术由于其在生物标志物验证,蛋白质/肽确认和表征以及途径作图中的广泛应用,在蛋白质组学质谱分析中是一种快速增长的应用。由于需要跨多个样品以有针对性的方式监控更广泛的蛋白质组,因此更高的通量变得至关重要。快速检测开发,更高的多重性和更强大的检测需求是一些关键的挑战。在这项工作中,混合三重四极杆线性离子阱质谱仪上的独特工作流程与自动化软件MRMPilot™软件和MultiQuant™软件相结合,已被用于自动化和简化高度多重MRM测定的创建。现在,获取蛋白质组学发现数据的完整工作流程,以优化MRM转换,从而创建最终的MRM分析(> 1000个MRM转换),只需几天时间。 id =“ __ p88”>在在这项研究中,使用在各种生长条件下生长的大肠杆菌样品进行分析,以说明MRM分析开发过程的效率。使用mTRAQ®试剂Δ0,Δ4和Δ8的标记策略,其中一种试剂标记的样品用作内标(GIS)。这在测定开发的鲁棒性方面提供了额外的改进。这种高效的工作流程导致开发了MRM检测方法,速率约为2个肽/小时(约48个肽/天)。这将开发大型MRM分析所需的时间从数周减少到了几天。所有测定开发/ MRM提纯均从生物基质完成,该测定开发策略不需要合成肽,从而降低了总体项目成本。 id =“ __ p89”> > A.13 id =“ __ p90”> >复杂噬菌体201phi2-1中的结构蛋白 id =“ __ p91”> > S。 Weintraub,JA Thomas,K。Hakala,P。Serwer和SC Hardies id =“ __ p92”> >德克萨斯州圣安东尼奥市德克萨斯大学健康科学中心大学 id =“ __ p93”>尾噬菌体是细菌病毒,其蛋白质头部带有DNA基因组,该头部与尾巴相连,尾巴用于将DNA注入宿主细胞。用作抗菌剂的多种噬菌体类型和感染机制是令人感兴趣的。我们分离并测序了不常见的绿脓杆菌噬菌体201phi2-1的316,674-bp基因组。由于无法通过比较方法确定460种预测编码蛋白中大多数的功能,因此使用MS鉴定的蛋白来补充信息学。鉴定出空前数量的病毒粒子蛋白(88),其中几个(18)已被切割成一种以上的多肽。凭借高序列覆盖率和发现的大量半胰蛋白酶肽,我们可以定义许多多肽终点,从而确定负责这些切割的前蛋白酶的切割基序。大多数噬菌体裂解主要的衣壳蛋白以使衣壳能够在DNA包装过程中扩增,这是检测到的201phi2-1裂解之一。裂解模式与信息分析相结合,以推测在该噬菌体中还可能发生其他成熟过程。通过定制的谱图建立方法发现切割的蛋白质之一是RNA聚合酶β链的遥远同源物。分裂后,前肽和聚合酶链保留在头部。我们假设前肽决定了衣壳的定位,并且裂解释放了聚合酶链以注入细胞。对于在美国密西西比州的病毒体中发现的三个RNAP亚基之一,美国证明存在一个自剪接内含子。大多数噬菌体编码一个支架蛋白,衣壳围绕该支架蛋白组装,然后在DNA进入过程中被切割并离开病毒体。在6个衣壳蛋白家族的N末端前肽中发现了支架样序列,其C末端结构域是同源的并保留在成熟病毒体中。通过光谱计数来估计病毒体中C端结构域的化学计量,随后估计已经从病毒体中释放的前肽的质量适合于这种大小的病毒体的支架。据推测,保留的C末端结构域构成了该病毒报道的新型内部头部。最后,我们试图解决一个差异,即频谱计数图表明存在大量的胶凝体涂片,与考马斯谱不一致。 Downgel涂片中的肽覆盖率与一定程度的非特异性蛋白降解相一致。通过将光谱计数与几种病毒粒子蛋白的已知化学计量比进行比较,发现了饱和效应,该效应高估了每个凝胶切片中稀有降解物种的数量。正在努力在这些评估中包括前体离子强度,以更准确地确定201phi2-1结构蛋白的相对拷贝数。 id =“ __ p94”> > A.14 id =“ __ p95”> >通过FTICR / ECD / MS / MS和生物信息学对超修饰蛋白进行差异PTM分析的快速方法 id =“ __p96“> > F。 Li 1 ,S。Guan 1 ,F。Chu 2 ,R。Talroze 1 和AL Burlingame < sup> 1 id =“ __ p97”> > 1 质谱仪,加州大学旧金山分校药物化学系, CA; 2 新罕布什尔州达勒姆市新罕布什尔大学生命科学与农业学院 id =“ __ p98”>质谱已发展成为最强大的方法蛋白质鉴定和蛋白质共价修饰的表征。许多蛋白质翻译后修饰(PTM)的性质和位置可以通过最近开发的质谱方法进行鉴定,甚至可以定量。此外,与其他方法不同,质谱可以用来发现新的蛋白质和蛋白质的新修饰。 id =“ __ p99”>尽管在过去十年中,质谱在生物应用中取得了令人瞩目的进步,翻译后修饰对蛋白质的影响远非常规。通常需要劳动密集型且费时的样品制备步骤来富集或分离修饰的物种,并且无法保证成功。在许多生物学研究领域中,急需一种快速,简便且经济的方法来进行差异PTM分析,而无需在多个样品上鉴定每个PTM进行比较。但是,文献中没有报道这种方法。在这里,我们提出了一种解决这一未满足需求的方法。 id =“ __ p100”>组蛋白是具有许多修饰的生物学上重要的蛋白质。与常规PTM测定相比,表征组蛋白的修饰更具挑战性。来自野生型的两个组蛋白H4样品和小鼠胚胎干细胞的突变体用于说明此方法。首先将两个组蛋白H4样品各自分别作为完整蛋白直接注入FTICR质谱仪中。可以为每个样品获得所有修饰物种的MS分子图。从其他物种中进一步分离出具有相同M / Z的所有异构体,并通过ECD进行MS / MS裂解。积累了多个MS / MS光谱,以提高ECD光谱的信噪比。 id =“ __ p101”>开发了一种“搜索所有可能”算法,以匹配所有样品的理论MS / MS同位素分布序列上可能的PTM组合到实验MS / MS峰。将所有匹配的实验峰映射到指示PTM数量的序列上,该映射清楚地说明了“分段” PTM分配。此外,所有修饰序列均按理论峰与实验数据匹配程度的顺序进行排序。这样的最佳匹配修饰序列列表,结合分段PTM分配用来检测两个样本之间的差异,而不必识别每个样本上的单个PTM。最终结果表明,两种样品的PTM的性质相同,而某些可修饰物种的丰度在可检测的动态范围内有所不同。 id =“ __ p102”>此方法所需的样品制备最少。不需要酶消化或PTM变体的分析分离。处理样品复杂性的困难已从样品制备转移到MS / MS数据分析阶段。 id =“ __ p103”>该方法可作为检测生物学相关样品之间差异的通用筛选方法,例如(1)野生型和突变体,(2)正常和退化的,(3)健康和疾病样品,对于快速修饰和高通量的组蛋白等超修饰蛋白特别有用。 id = “ __p104“>这项工作得到了美国国家科学研究院国家研究资源中心的生物医学研究技术计划,加州大学旧金山分校的生物有机生物医学质谱资源,美国国立卫生研究院赠款NCRR P41RR001614和NCRR RR019934的支持。 p> id =“ __ p105”> > A.15 id =“ __ p106”> >使用基于TPP的分析工作流程搜索MS / MS可以改善数据挖掘数据 id =“ __ p107”> > A。 Quandt 1 ,L。Malstroem 1 ,H.Lam 2 ,D.Shteynberg 3 和R.Aebersold 1 id =“ __ p108”> > 1 瑞士苏黎世联邦理工学院分子系统生物学研究所; 2 香港科技大学化学与生物分子工程系,香港九龙; 3 系统生物学研究所,华盛顿州西雅图 id =“ __ p109”>从串联质谱(MS / MS)数据中鉴定和鉴定多肽代表了蛋白质组学的关键方面。过去,已经开发了许多软件包来解决此问题。除了开发新的分析工具外,最近的出版物还描述了流水线化不同搜索程序以提高识别率。不幸的是,对于实际用户来说,何时应用哪种软件或参数集来检索最佳结果仍然不清楚。大多数人依赖于识别软件的使用,因此通常会导致很大一部分实验光谱无法识别。因此,使用不同的工具和参数组合至关重要,但实际上很少采用。除其他原因外,例如手动结果验证和各种数据格式的处理,主要问题仍然在于不同标识工具的自动组合。在这里,我们提出了一种基于TransProteomicPipeline的工作流程方法(Keller等,2005; Pedrioli等,2004),并结合了多种搜索工具和策略,其结果可检索出更完整的肽段鉴定列表和更高的鉴定范围。蛋白质覆盖率。对于我们来说,工作流程是并行和/或按顺序排列的各种标识工具和搜索策略的组合。在示例工作流程中,我们将在这里展示两个经典的搜索引擎(X!Tandem和OMSSA)与光谱库搜索搜索(SpectraST)的结合。实际上,我们使用前两个搜索工具的输出来动态创建频谱库,然后再进行搜索。为了将工作流程的性能与各个搜索引擎的结果进行比较,我们使用了18种蛋白质混合数据集,该数据集是专门为基准化不同的搜索工具和管道而创建的。在这些初始数据集上,我们能够证明,通过降低可接受的假阳性识别水平以及显着提高的蛋白质覆盖率,从而使结果更加可靠,所谓的工作流程中各种识别工具的组合可提高对结果的信任度搜索结果。 id =“ __ p110”> > A.16 id =“ __ p111”> >微波辅助的蛋白质组学 id =“ __ p112”> > P。 Liu和W.Sandoval id =“ __ p113”> > Genentech,Inc.,S。San Francisco,CA id =“ __ p114”>可逆蛋白的磷酸化控制着许多重要的生物学功能。为了进一步了解细胞内位点涉及的复杂机制,经常需要阐明磷酸化的确切位点。我们已经研究了微波增强胰蛋白酶消化对磷酸肽回收的使用。我们已经结合使用稳定的同位素标记的肽来量化观察到的差异。此外,我们已经定量评估了稳定化的磷酸肽和磷蛋白的化学修饰在随后通过质谱或Edman降解进行分析中的用途。最后,我们将我们的发现应用于过氧化物处理的细胞裂解液的全球磷酸蛋白质组学分析。 id =“ __ p115”> > A.17 id =“ __ p116” > >水稻芽中质外体蛋白质组分析对盐胁迫的响应 id =“ __ p117”> > Y。 Song 1 ,A。L. Burlingame 2 和 class =“ underline”> Y。郭 1,2 id =“ __ p118”> > 1 河北省分子与细胞生物学研究所石家庄师范大学; 2 质谱仪,加利福尼亚大学旧金山分校药物化学系 id =“ __ p119”>植物已经进化出复杂的系统来应对由于它们的固执特性,它们会带来不利的环境条件,例如寒冷,干旱和盐碱化。尽管已经提出了许多胁迫响应网络,但是植物质外体在植物胁迫响应中的作用显然被忽略了。为了研究质外体蛋白在盐胁迫响应中的作用,将10天大的水稻植株用200 mM NaCl处理1、6或12小时,然后提取可溶性质外体蛋白,并与未处理的对照进行差异分析。通过二维DIGE饱和度标记技术。通过LC-MS / MS鉴定了122个显着变化(1-ANOVA p值<0.05)的斑点,并且鉴定了代表69种蛋白质的117个斑点。根据生物信息学分析,其中的37种蛋白质是质外性蛋白质。这些蛋白质主要参与碳水化合物的代谢,氧化还原,蛋白质加工和降解。根据功能分类和聚类分析的结果,提出了质外体蛋白的应激反应模型。这些日期表明质外体是植物胁迫信号接收和响应的重要部分。 id =“ __ p120”> LC-MS / MS数据由UCSF(AL)的生物有机生物医学质谱资源提供主任Burlingame)得到了NIH国家研究资源中心的生物医学研究技术计划,NIH NCRR P41RR001614和NIH NCRR RR019934的支持。 id =“ __ p121”> > A.18 id =“ __ p122”> >在四极杆飞行时间质谱仪上使用Lys-N与电子转移解离结合进行肽测序的研究 < p id =“ __ p123”> > class =“ underline”> J。 Langridge 1 ,J。Brown 1 ,S。Mohammed 2 ,N。Taouatas 2 , Iain DG Campuzano 1 和AJR Heck 2 id =“ __ p124”> > 1 英国曼彻斯特MS技术中心的沃特世公司; 2 荷兰乌特勒支乌特勒支大学生物分子质谱系 id =“ __ p125”>最近,Lys-N被引入作为一种近乎理想的酶涉及电子转移解离(ETD)或MALDI-CID的蛋白质组学工作流程。具有单个碱性残基的Lys-N肽(美国印第安那州,与ETD结合使用)在光谱解释方面具有明显的优势,这是因为肽串联质谱几乎全部由c型片段离子组成。此外,Lys-N和SCX的结合使具有单个碱性残基的乙酰化,磷酸化肽和具有单个碱性残基的非修饰肽的分离和富集变得容易。最近,我们描述了在Q-Tof仪器上实施ETD的方法,并在此描述了在这种改良仪器上对Lys-N策略的评估。 id =“ __ p126”> BSA被45 mM二硫苏糖醇降低(50℃,15分钟),然后使用110mM碘乙酰胺进行烷基化(黑暗,RT,15分钟)。以1:85(w / w)的比例添加Lys-N,并在37°C下温育过夜。 Grifola Frondosa(Lys-N)的金属内肽酶购自Seikagaku Corporation(Tokyo), 日本)。通过四极选择双电荷或三电荷的前体阳离子,并使其与先前在QTOF的行波离子导向器(TWAVE)碰撞池中收集的荧蒽或偶氮苯试剂阴离子混合并反应。 TOF质量分析仪记录了产物离子光谱。 id =“ __ p127” class =“ p p-last”>我们已经在改进的混合四极杆正交加速度上使用电子转移解离(ETD)获得了初步数据飞行时间质谱仪(Q-Tof)。最初已经研究了牛血清白蛋白(BSA)的Lys-N消化物中的几种肽。在通过来自试剂阴离子的电子转移进行解离之前,用四极杆选择消化物中的各种肽。对于双电荷前体,采集的MS / MS数据几乎仅显示c离子,这些是与N端序列相关的离子。在肽主链中几乎每个酰胺键处都观察到了切割,产生了易于理解的序列阶梯。再加上oa-TOF质量分析仪固有的质量测量精度和分辨率,使数据易于进行从头测序。如先前报道,碎片离子的信号强度似乎随着m / z的降低而减小。除了ETD实验之外,质谱仪还可以获取CID的交替扫描,因此,将比较从Lys-N消化产生并通过纳米级LC分离的各种肽的ETD和CID之间的数据进行比较和对比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号