首页> 美国卫生研究院文献>Micromachines >A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip
【2h】

A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip

机译:具有CMOS放大器芯片的温度补偿单晶绝缘硅(SOI)MEMS振荡器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-sustained feedback oscillators referenced to MEMS/NEMS resonators have the potential for a wide range of applications in timing and sensing systems. In this paper, we describe a real-time temperature compensation approach to improving the long-term stability of such MEMS-referenced oscillators. This approach is implemented on a ~26.8 kHz self-sustained MEMS oscillator that integrates the fundamental in-plane mode resonance of a single-crystal silicon-on-insulator (SOI) resonator with a programmable and reconfigurable single-chip CMOS sustaining amplifier. Temperature compensation using a linear equation fit and look-up table (LUT) is used to obtain the near-zero closed-loop temperature coefficient of frequency (TCf) at around room temperature (~25 °C). When subject to small temperature fluctuations in an indoor environment, the temperature-compensated oscillator shows a >2-fold improvement in Allan deviation over the uncompensated counterpart on relatively long time scales (averaging time τ > 10,000 s), as well as overall enhanced stability throughout the averaging time range from τ = 1 to 20,000 s. The proposed temperature compensation algorithm has low computational complexity and memory requirement, making it suitable for implementation on energy-constrained platforms such as Internet of Things (IoT) sensor nodes.
机译:以MEMS / NEMS谐振器为参考的自持反馈振荡器具有在定时和传感系统中广泛应用的潜力。在本文中,我们描述了一种实时温度补偿方法,以改善此类MEMS基准振荡器的长期稳定性。该方法在〜26.8 kHz的自持MEMS振荡器上实现,该振荡器将绝缘体上单晶硅(SOI)谐振器的基本面内模式谐振与可编程和可重新配置的单芯片CMOS维持放大器集成在一起。使用线性方程拟合和查找表(LUT)进行温度补偿,以获取室温(〜25°C)附近频率接近零的闭环温度系数(TCf)。当室内环境中的温度波动较小时,温度补偿的振荡器在相对较长的时间范围内(平均时间τ> 10,000 s)相对于未补偿的振荡器,其Allan偏差提高了2倍以上,并且稳定性得到了提高整个平均时间范围为τ= 1至20,000 s。提出的温度补偿算法具有较低的计算复杂度和存储要求,使其适合在能源受限的平台(例如,物联网(IoT)传感器节点)上实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号