首页> 美国卫生研究院文献>Micromachines >Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
【2h】

Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium

机译:破裂多孔介质中两相流的热塑性微观模型研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC) was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D) cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture) with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture) did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.
机译:在过去的几年中,微模型已经成为可视化具有孔隙结构的多孔介质中流动现象的有用工具,例如,具有天然土工材料裂缝的土壤或岩石中的多流体动力学。使用玻璃或硅基板制作的微模型会产生高昂的材料成本;特别地,用于制造玻璃或硅基微模具的微制造设备成本通常很高。这可能是研究人员研究多孔介质的两相流动行为的障碍。对于微流体模型,刚性热塑性材料是优选的聚合物材料,因为它对渗透和变形具有高抵抗力。在这项研究中,由于其优异的化学,光学和机械性能,环状烯烃共聚物(COC)被选为微模型的基质。针对两相流实验,开发了具有复杂孔隙几何结构的精细微模型,该模型代表了天然油或地下水储层中裂隙岩石的二维(2D)截面轮廓。使用光学可视化系统,我们可以在吸水和排水过程中可视化微模型中的流动行为。结果表明,当注入或抽出速率较低时,半径较大的主通道(裂缝)的流动阻力要大于孔隙较小的周围区域的流阻力。当我们增加流速时,由于复杂的两相流动力学,主流通道(裂缝)中水和油的提取效率不会单调增加。这些发现提供了在多孔介质中残留捕集的新机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号