首页> 美国卫生研究院文献>PLoS Computational Biology >Combining Experiments and Simulations Using the Maximum Entropy Principle
【2h】

Combining Experiments and Simulations Using the Maximum Entropy Principle

机译:利用最大熵原理将实验与仿真相结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.
机译:计算生物学的关键组成部分是将计算机建模的结果与实验测量结果进行比较。尽管在计算生物学的许多领域中使用的模型和算法取得了重大进展,但这种比较有时仍表明计算与实验数据不一致。最大熵的原理是根据新数据构造概率分布的通用过程,在初始模型提供的结果与实验不一致的情况下,它成为自然的工具。近年来,在序列分析,结构建模和神经生物学等领域,我们领域最大熵的应用稳步增长。在此“观点”文章中,我们对该方法进行了广泛介绍,以鼓励进一步采用该方法。在一个简单的示例中说明了一般过程,此后我们在分子模拟领域中进行了实际应用,其中最大熵过程最近提供了新的见解。考虑到力场的精确度有限,大分子模拟有时会产生与实验不完全和定量一致的结果。解决此问题的常见方法是通过对实验数据进行势能函数扰动来明确确保两者之间的一致性。迄今为止,对于如何实施这种扰动还没有达成共识。最近的三篇论文使用最大熵方法探讨了这个问题,为该问题提供了新的理论和实践见解。我们依次强调这些贡献中的每一个,最后讨论剩余的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号