首页> 美国卫生研究院文献>PLoS Computational Biology >A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology
【2h】

A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology

机译:使用持久性同源性的海马空间图形成的拓扑范式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity.
机译:动物在太空中导航的能力取决于其创建环境心理图的能力。海马体是负责此类图谱的大脑区域,并且已假定它对几何信息(距离,角度)进行编码。但是,鉴于海马输出由跨越许多神经元的尖峰模式组成,并且下游区域必须能够将这些模式转换为有关动物空间环境的准确信息,我们假设1)神经元放电的时间模式,尤其是共同放电射击是解码空间信息的关键,并且2)由于共同射击意味着场所场的空间重叠,因此通过共同射击编码的地图将基于连通性和邻接性,即它将是拓扑地图。在这里,我们用简单的海马活动模型测试这种拓扑假说,在三个拓扑和几何上不同的测试环境中对大鼠轨迹进行计算机模拟时,会改变三个参数(发射率,放置场大小和神经元数量)。使用基于持久性同源性理论的最新开发工具的代数拓扑领域的计算算法,我们发现神经元共点火模式实际上可以在生物学上逼真的时间内传达有关环境的拓扑信息。此外,我们的模拟揭示了一个“学习区域”,该区域突出显示了在组合以产生或多或少善于映射形成的海马状态时参数之间的相互作用。例如,在学习区域内,可以通过调整发射速率或放置场大小来补偿较少数量的神经元发射,但超过一定点图就会开始失败。我们建议该学习区域提供一个连贯的理论视角,通过它可以观察通过改变位置细胞激发速率或空间特异性而损害空间学习的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号