首页> 美国卫生研究院文献>Frontiers in Cell and Developmental Biology >Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors
【2h】

Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors

机译:不同氧水平下大脑中活性氧的形成:缺氧诱导因子的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hypoxia inducible factor (HIF) is the master oxygen sensor within cells and is central to the regulation of cell responses to varying oxygen levels. HIF activation during hypoxia ensures optimum ATP production and cell integrity, and is associated both directly and indirectly with reactive oxygen species (ROS) formation. HIF activation can either reduce ROS formation by suppressing the function of mitochondrial tricarboxylic acid cycle (TCA cycle), or increase ROS formation via NADPH oxidase (NOX), a target gene of HIF pathway. ROS is an unavoidable consequence of aerobic metabolism. In normal conditions (i.e., physioxia), ROS is produced at minimal levels and acts as a signaling molecule subject to the dedicated balance between ROS production and scavenging. Changes in oxygen concentrations affect ROS formation. When ROS levels exceed defense mechanisms, ROS causes oxidative stress. Increased ROS levels can also be a contributing factor to HIF stabilization during hypoxia and reoxygenation. In this review, we systemically review HIF activation and ROS formation in the brain during hypoxia and hypoxia/reoxygenation. We will then explore the literature describing how changes in HIF levels might provide pharmacological targets for effective ischaemic stroke treatment. HIF accumulation in the brain via HIF prolyl hydroxylase (PHD) inhibition is proposed as an effective therapy for ischaemia stroke due to its antioxidation and anti-inflammatory properties in addition to HIF pro-survival signaling. PHD is a key regulator of HIF levels in cells. Pharmacological inhibition of PHD increases HIF levels in normoxia (i.e., at 20.9% O2 level). Preconditioning with HIF PHD inhibitors show a neuroprotective effect in both in vitro and in vivo ischaemia stroke models, but post-stroke treatment with PHD inhibitors remains debatable. HIF PHD inhibition during reperfusion can reduce ROS formation and activate a number of cellular survival pathways. Given agents targeting individual molecules in the ischaemic cascade (e.g., antioxidants) fail to be translated in the clinic setting, thus far, HIF pathway targeting and thereby impacting entire physiological networks is a promising drug target for reducing the adverse effects of ischaemic stroke.
机译:缺氧诱导因子(HIF)是细胞内的主要氧气传感器,对于调节细胞对不同氧气水平的反应至关重要。缺氧期间的HIF激活可确保最佳的ATP产生和细胞完整性,并与活性氧(ROS)形成直接或间接相关。 HIF激活可以通过抑制线粒体三羧酸循环(TCA循环)的功能来减少ROS的形成,也可以通过NIFPH氧化酶(NOX)(一种HIF途径的靶基因)来增加ROS的形成。 ROS是有氧代谢的必然结果。在正常情况下(即生理性疾病),ROS以最小水平产生,并且作为信号分子,受到ROS产生和清除之间的专门平衡。氧气浓度的变化会影响ROS的形成。当ROS水平超过防御机制时,ROS会引起氧化应激。 ROS水平升高也可能是缺氧和复氧期间HIF稳定的一个促成因素。在这篇综述中,我们系统地综述了缺氧和缺氧/复氧期间脑中HIF的激活和ROS的形成。然后,我们将探索描述HIF水平变化如何为有效的缺血性中风治疗提供药理学目标的文献。通过HIF脯氨酰羟化酶(PHD)抑制,HIF在大脑中的蓄积被认为是缺血性卒中的有效疗法,因为它具有抗氧化和抗炎的特性,此外还具有HIF生存信号。 PHD是细胞中HIF水平的关键调节剂。 PHD的药理抑制作用可增加常氧中的HIF水平(即O2水平为20.9%)。使用HIF PHD抑制剂进行的预处理在体外和体内缺血性卒中模型中均显示出神经保护作用,但是用PHD抑制剂进行卒中后治疗仍然值得商bat。在再灌注期间抑制HIF PHD可减少ROS的形成并激活许多细胞存活途径。鉴于靶向缺血级联反应中单个分子的药物(例如抗氧化剂)在临床环境中无法翻译,到目前为止,靶向HIF途径并因此影响整个生理网络是降低缺血性卒中不良反应的有希望的药物靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号