首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study
【2h】

Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

机译:多巴胺能神经元中AMPA和NMDA受体电流的协同作用:建模研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency.
机译:多巴胺能(DA)神经元显示两种发射方式:低频补品和高频猝发。突发内的高频发射归因于NMDA,而不是AMPA受体激活。在我们的DA神经元模型中,无论是生物物理模型还是抽象模型,NMDA受体电流都可以显着提高其放电频率,而AMPA受体电流却不能引起高频活动,通常可以抑制放电。然而,两种电流都是由谷氨酸受体产生的,因此经常被共同激活。在这里,我们考虑了AMPA和NMDA突触输入在DA神经元模型中的综合影响。根据AMPAR和NMDAR电流的电导,可以观察到不同类型的神经元活动(静止状态,低频或高频放电)。在两个模型(生物物理模型和缩减模型)中,我们表明,如果两个受体针对某些参数值被共同激活,则发射频率会更有效地提高。特别是,在更定量的生物物理模型中,最大频率比单独使用NMDAR的最大频率高40%。使用简化模型在相空间演化的框架中解释了这种频率增长的动力学机制。简而言之,AMPAR和NMDAR电流都使零位线变平,从而增加了频率,而只有NMDA阻止了零位线的完全展开,从而提供了强大的触发能力。因此,我们确认了NMDAR在产生高频发射中的主要作用,并得出结论认为AMPAR激活会进一步显着增加频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号