首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?
【2h】

Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?

机译:结构脑网络:全脑描记术LiFE优化的影响是什么?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural brain networks constructed based on diffusion-weighted MRI (dMRI) have provided a systems perspective to explore the organization of the human brain. Some redundant and nonexistent fibers, however, are inevitably generated in whole brain tractography. We propose to add one critical step while constructing the networks to remove these fibers using the linear fascicle evaluation (LiFE) method, and study the differences between the networks with and without LiFE optimization. For a cohort of nine healthy adults and for 9 out of the 35 subjects from Human Connectome Project, the T1-weighted images and dMRI data are analyzed. Each brain is parcellated into 90 regions-of-interest, whilst a probabilistic tractography algorithm is applied to generate the original connectome. The elimination of redundant and nonexistent fibers from the original connectome by LiFE creates the optimized connectome, and the random selection of the same number of fibers as the optimized connectome creates the non-optimized connectome. The combination of parcellations and these connectomes leads to the optimized and non-optimized networks, respectively. The optimized networks are constructed with six weighting schemes, and the correlations of different weighting methods are analyzed. The fiber length distributions of the non-optimized and optimized connectomes are compared. The optimized and non-optimized networks are compared with regard to edges, nodes and networks, within a sparsity range of 0.75–0.95. It has been found that relatively more short fibers exist in the optimized connectome. About 24.0% edges of the optimized network are significantly different from those in the non-optimized network at a sparsity of 0.75. About 13.2% of edges are classified as false positives or the possible missing edges. The strength and betweenness centrality of some nodes are significantly different for the non-optimized and optimized networks, but not the node efficiency. The normalized clustering coefficient, the normalized characteristic path length and the small-worldness are higher in the optimized network weighted by the fiber number than in the non-optimized network. These observed differences suggest that LiFE optimization can be a crucial step for the construction of more reasonable and more accurate structural brain networks.
机译:基于扩散加权MRI(dMRI)构建的结构性大脑网络为探索人脑的组织结构提供了系统视角。但是,在全脑束描记术中不可避免地会产生一些多余的和不存在的纤维。我们建议在构建网络以使用线性束评估(LiFE)方法去除这些光纤时增加一个关键步骤,并研究使用和不使用LiFE优化的网络之间的差异。对于来自9个健康成年人的队列以及人类连接组项目的35个受试者中的9个,分析了T1加权图像和dMRI数据。每个大脑被分割成90个感兴趣的区域,同时应用概率性的谱图算法生成原始的连接组。 LiFE消除了原始连接罩中多余和不存在的光纤,从而创建了优化的连接罩,并随机选择了与优化的连接罩相同数量的光纤,从而创建了非优化的连接罩。碎片和这些连接组的组合分别导致了优化和非优化网络。通过六种加权方案构造优化网络,并分析了不同加权方法的相关性。比较了未优化和优化的连接体的纤维长度分布。在边际,节点和网络的稀疏度为0.75-0.95的范围内,比较了优化和未优化的网络。已经发现在优化的连接组中存在相对更多的短纤维。在稀疏度为0.75时,优化网络的约24.0%边缘与未优化网络中的边缘显着不同。大约13.2%的边缘被分类为误报或可能的缺失边缘。对于未优化和优化的网络,某些节点的强度和中间性中心性显着不同,但节点效率没有显着差异。在经过光纤数量加权的优化网络中,归一化聚类系数,归一化特征路径长度和小规模性要高于未优化网络。这些观察到的差异表明,LiFE优化对于构建更合理,更准确的结构性大脑网络至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号