首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >The Role of Degree Distribution in Shaping the Dynamics in Networks of Sparsely Connected Spiking Neurons
【2h】

The Role of Degree Distribution in Shaping the Dynamics in Networks of Sparsely Connected Spiking Neurons

机译:度分布在塑造稀疏连接的尖峰神经元网络动力学中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuronal network models often assume a fixed probability of connection between neurons. This assumption leads to random networks with binomial in-degree and out-degree distributions which are relatively narrow. Here I study the effect of broad degree distributions on network dynamics by interpolating between a binomial and a truncated power-law distribution for the in-degree and out-degree independently. This is done both for an inhibitory network (I network) as well as for the recurrent excitatory connections in a network of excitatory and inhibitory neurons (EI network). In both cases increasing the width of the in-degree distribution affects the global state of the network by driving transitions between asynchronous behavior and oscillations. This effect is reproduced in a simplified rate model which includes the heterogeneity in neuronal input due to the in-degree of cells. On the other hand, broadening the out-degree distribution is shown to increase the fraction of common inputs to pairs of neurons. This leads to increases in the amplitude of the cross-correlation (CC) of synaptic currents. In the case of the I network, despite strong oscillatory CCs in the currents, CCs of the membrane potential are low due to filtering and reset effects, leading to very weak CCs of the spike-count. In the asynchronous regime of the EI network, broadening the out-degree increases the amplitude of CCs in the recurrent excitatory currents, while CC of the total current is essentially unaffected as are pairwise spiking correlations. This is due to a dynamic balance between excitatory and inhibitory synaptic currents. In the oscillatory regime, changes in the out-degree can have a large effect on spiking correlations and even on the qualitative dynamical state of the network.
机译:神经元网络模型通常假设神经元之间存在固定的连接概率。该假设导致随机网络具有相对狭窄的二项式入度和出度分布。在这里,我通过针对内向度和外向度分别对二项式和截断的幂律分布进行插值来研究广度分布对网络动力学的影响。对于抑制性网络(I网络)以及兴奋性和抑制性神经元网络(EI网络)中的反复性兴奋性连接,都可以执行此操作。在这两种情况下,增加度数分布的宽度都会通过驱动异步行为和振荡之间的转换来影响网络的全局状态。这种效果在简化的速率模型中得以再现,该模型包括由于细胞内向度导致的神经元输入异质性。另一方面,扩大出界度分布显示出增加了成对神经元的共同输入的比例。这导致突触电流的互相关(CC)的幅度增加。在I网络的情况下,尽管电流中存在很强的振荡CC,但由于滤波和复位效应,膜电位的CC仍然很低,导致尖峰计数的CC非常弱。在EI网络的异步机制中,扩大输出度会增加循环励磁电流中CC的幅度,而总电流的CC基本上不受成对峰值相关性的影响。这是由于兴奋性和抑制性突触电流之间的动态平衡。在振荡状态下,向外度的变化会极大地影响峰值相关性,甚至会影响网络的定性动态状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号