首页> 美国卫生研究院文献>Frontiers in Neuroscience >s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography
【2h】

s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

机译:s-SMOOTH:稀疏性和平滑度增强的脑电图断层扫描

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.
机译:脑电图源成像使我们能够以出色的时间分辨率(〜ms)从电测量结果重建大脑中的电流密度。相应的EEG逆问题是一个病态的问题,具有无限多个解决方案。这是由于以下事实:EEG传感器的数量通常比潜在偶极子位置的数量少得多,而且记录的信号中存在噪声污染。为了获得唯一的解决方案,可以将正则化合并到解决方案上。正则化的适当选择对于大脑图像的重建精度至关重要。在本文中,我们提出了一种新的稀疏性和平滑度增强的脑部TomograpHy(s-SMOOTH)方法,通过整合两种最近提出的正则化技术来提高重建精度:总广义变异(TGV)归一化和ℓ1-2归一化。 TGV能够保留源边缘并以高精度恢复源强度的空间分布。与相关的总变化量(TV)正则化相比,TGV增强了图像的平滑度并减少了楼梯伪影。在2D图像上定义的传统TGV已广泛应用于图像处理领域。为了处理3D脑电图源图像,我们提出了基于体素的总广义变化(vTGV)正则化,将二阶TGV的定义从2D平面图像扩展到3D不规则表面(例如皮质表面)。另外,利用ℓ1-2归一化来促进电流密度本身的稀疏性。我们证明ℓ1-2正则化比enhance1正则化能够增强稀疏性并加快计算速度。基于凸函数算法(DCA)的差分和乘数交替方向方法(ADMM)的高效鲁棒算法对提出的模型进行了求解。使用合成数据进行的数值实验证明,与总的重建精度,定位精度和聚焦度相比,该方法相对于其他最新方法具有优势。在事件相关的潜在数据的源定位中的应用进一步证明了该方法在实际场景中的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号