首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Spontaneous Neural Dynamics and Multi-scale Network Organization
【2h】

Spontaneous Neural Dynamics and Multi-scale Network Organization

机译:自发神经动力学和多尺度网络组织

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spontaneous neural activity has historically been viewed as task-irrelevant noise that should be controlled for via experimental design, and removed through data analysis. However, electrophysiology and functional MRI studies of spontaneous activity patterns, which have greatly increased in number over the past decade, have revealed a close correspondence between these intrinsic patterns and the structural network architecture of functional brain circuits. In particular, by analyzing the large-scale covariation of spontaneous hemodynamics, researchers are able to reliably identify functional networks in the human brain. Subsequent work has sought to identify the corresponding neural signatures via electrophysiological measurements, as this would elucidate the neural origin of spontaneous hemodynamics and would reveal the temporal dynamics of these processes across slower and faster timescales. Here we survey common approaches to quantifying spontaneous neural activity, reviewing their empirical success, and their correspondence with the findings of neuroimaging. We emphasize invasive electrophysiological measurements, which are amenable to amplitude- and phase-based analyses, and which can report variations in connectivity with high spatiotemporal precision. After summarizing key findings from the human brain, we survey work in animal models that display similar multi-scale properties. We highlight that, across many spatiotemporal scales, the covariance structure of spontaneous neural activity reflects structural properties of neural networks and dynamically tracks their functional repertoire.
机译:历史上,自发性神经活动被视为与任务无关的噪声,应通过实验设计对其进行控制,并通过数据分析将其消除。然而,自发活动模式的电生理学和功能MRI研究在过去十年中已大大增加,它揭示了这些内在模式与功能性脑回路的结构网络结构之间的紧密对应。特别是,通过分析自发血流动力学的大规模协变,研究人员能够可靠地识别人脑中的功能网络。随后的工作试图通过电生理学测量来识别相应的神经特征,因为这将阐明自发性血液动力学的神经起源,并揭示在较慢和较快时间范围内这些过程的时间动态。在这里,我们调查量化自发神经活动,回顾他们的经验成功及其与神经影像学发现的对应性的常见方法。我们强调侵入式电生理测量,这些测量适合基于幅度和相位的分析,并且可以以高时空精度报告连通性的变化。在总结了人脑的主要发现之后,我们调查了显示相似多尺度特性的动物模型中的工作。我们着重指出,在许多时空尺度上,自发神经活动的协方差结构反映了神经网络的结构特性,并动态跟踪了其功能库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号