首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections
【2h】

Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections

机译:具有远程互连的皮质模型的同步慢波和异步唤醒活动的大规模仿真的缩放比例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192 × 192 modules, each composed of 1,250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40 GHz clock rate. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1,024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3 × 109 and 4.1 × 109 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.
机译:皮质突触组织在多个时空尺度上支持一系列动态状态,从同步慢波活动(SWA),深度睡眠或麻醉的特征,到波动性,清醒期间的异步活动(AW)。这种动态多样性对产生有效的大规模仿真构成了挑战,这些仿真体现了短程和长程突触连接的现实隐喻。实际上,在SWA和AW期间,皮质组织的不同空间范围在给定的时间跨度内以不同的发射速率处于活动状态,这意味着需要进行大量本地计算和通信。因此,对仿真性能和鲁棒性的平衡评估应包括对各种皮质动态状态的测试。在这里,我们展示了SWA和AW中针对神经群体的二维网格的专有分布式和塑性钉状神经网络(DPSNN)仿真引擎的性能缩放,它反映了皮质的模块化组织。我们探索了多达192×192个模块的网络,每个模块由1,250个具有尖峰频率适应性的“集成并发射”神经元组成,并且具有随着空间衰减常数变化而呈指数衰减的模间突触连通性。对于最大的网络,突触的总数超过700亿。该执行平台包括多达64个双插槽节点,每个插槽可在2.40 GHz时钟速率下安装8个Intel Xeon Haswell处理器内核。使用标准消息传递接口(MPI)协议实现的网络初始化时间,内存使用量和执行时间显示出从1到1,024个进程的良好伸缩性能。在模块间互连的探索范围内,两种皮质状态的模拟突触事件的每秒仿真速度在2.3×10 9 和4.1×10 9 之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号