首页> 美国卫生研究院文献>Geochemical Transactions >Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents Milos Greece
【2h】

Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents Milos Greece

机译:硫和氧同位素洞察希腊米洛斯岛浅海热液喷口中的硫循环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater.
机译:米洛斯岛附近的浅海(5 m深度)热液排放提供了一个理想的机会,可在微生物硫酸盐还原过程中以火成岩生源硫化物输入与生源硫化物生产之间的过渡为目标。海底喷口特征包括大(> 1m 2 )白色斑块,其中包含热液矿物(元素硫和硫化砷的橙/黄色斑块)以及硫氧化和还原微生物的细胞。分布在喷口和非喷口沉积物中的对硫化物敏感的薄膜捕获了强烈的地球化学空间格局,从地下的对流到扩散硫化物运移都有所不同。尽管有清晰的视觉证据表明通风口生物与热液活动密切相关,但孔隙流体中的硫和氧同位素组成却无法描绘出与非生物信号分开的生物信号。游离气体中的硫化氢(H2S)具有均匀的δ 34 S值(2.5±0.28‰,n = 4),与孔隙水H2S(2.7±0.36‰,n = 21)几乎相同。在孔隙水硫酸盐中,δ 34 SSO4和δ 18 OSO4没有成对增加,这是微生物硫酸盐还原的预期。取而代之的是,随着每个热液特征温度升高(高达97.4°C),孔隙水δ 34 SSO4值降低(从大约21‰到17‰)。我们将温度与δ 34 SSO4之间的反比解释为含氧海水与 34 S贫化的热液输入物之间的混合过程,这些过程在夹带海水的过程中被氧化。同位素质量平衡模型表明,来自硫化物氧化的仲硫酸盐提供了总硫酸盐池的至少15%。与δ 34 SSO4中的这种趋势一致,在低pH(<5),高温(> 75°C)下硫酸盐的氧同位素组成倾向于 18 O富集。 C)孔隙水。向高δ 18 OSO4的转变与酸性和高温条件下的平衡同位素交换相一致。目前的数据集无法确定热液中的硫化氢来源。然而,排放到海底的H2S的末端成员δ 34 S值与在〜300°C的温度下与地下硬石膏脉动的平衡同位素交换相一致。这些热液系统中的任何生物硫循环都被非生物化学反应所掩盖,该非生物化学反应是由低硫酸盐,富含H2S的热液和富氧,硫酸盐的海水之间的混合驱动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号