首页> 美国卫生研究院文献>Materials >Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production
【2h】

Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production

机译:镍钛诺形状记忆合金零件生产的选择性激光熔融技术进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitinol (nickel-titanium or Ni-Ti) is the most utilized shape memory alloy due to its good superelasticity, shape memory effect, low stiffness, damping, biocompatibility, and corrosion resistance. Various material characteristics, such as sensitivity to composition and production thermal gradients, make conventional methods ineffective for the manufacture of high quality complex Nitinol components. These issues can be resolved by modern additive manufacturing (AM) methods which can produce net or near-net shape parts with highly precise and complex Nitinol structures. Compared to Laser Engineered Net Shape (LENS), Selective Laser Melting (SLM) has the benefit of more easily creating a high quality local inert atmosphere which protects chemically-reactive Nitinol powders to a higher degree. In this paper, the most recent publications related to the SLM processing of Nitinol are reviewed to identify the various influential factors involved and process-related issues. It is reported how powder quality and material composition have a significant effect on the produced microstructures and phase transformations. The effect of heat treatments after SLM fabrication on the functional and mechanical properties are noted. Optimization of several operating parameters were found to be critical in fabricating Nitinol parts of high density. The importance of processing parameters and related thermal cooling gradient which are crucial for obtaining the correct phase structure for shape memory capabilities are also presented. The paper concludes by presenting the significant findings and areas of prospective future research in relation to the SLM processing of Nitinol.
机译:镍钛诺(镍钛或镍钛合金)是最常用的形状记忆合金,因为它具有良好的超弹性,形状记忆效果,低刚度,阻尼,生物相容性和耐腐蚀性。各种材料特性(例如对成分的敏感性和生产热梯度的敏感性)使常规方法对于制造高质量的复杂镍钛诺组分无效。这些问题可以通过现代增材制造(AM)方法解决,该方法可以生产具有高精度和复杂镍钛诺结构的网状或近网状零件。与激光工程网形(LENS)相比,选择性激光熔融(SLM)的优势在于更容易创建高质量的局部惰性气氛,从而在更高程度上保护化学反应性镍钛诺粉。在本文中,对与镍钛诺的SLM处理有关的最新出版物进行了综述,以确定涉及的各种影响因素和与过程相关的问题。据报道,粉末质量和材料组成如何对所产生的微观结构和相变产生重大影响。记录了SLM制造后的热处理对功能和机械性能的影响。发现几个操作参数的优化对于制造高密度镍钛诺零件至关重要。还介绍了对于获得形状记忆功能的正确相结构至关重要的工艺参数和相关的热冷却梯度的重要性。本文最后介绍了与镍钛诺的SLM加工相关的重要发现和未来研究的领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号