首页> 美国卫生研究院文献>Materials >Mechanical Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals
【2h】

Mechanical Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

机译:纤锌矿和掺锌锌GaN晶体的机械热力学和电子性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson’s ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson’s ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson’s ratios at planes (100) and (111) are isotropic, while the Poisson’s ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol−1 K−1, respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of states in the orbital hybridization between Ga and N atoms of wurtzite GaN are much higher, indicating more electrons participate in forming Ga-N ionic bonds in the wurtzite GaN.
机译:由于晶体表征实验方法的局限性,本研究基于密度泛函理论,通过第一性原理研究了纤锌矿和闪锌矿型GaN晶体的力学,热力学和电子性能。首先,利用Voigt和Hill近似计算了这两种GaN多晶的体模,剪切模量,弹性模量和泊松比,结果表明纤锌矿GaN具有较大的剪切模量和弹性模量,并具有更明显的脆性。此外,纤锌矿和掺锌的GaN单晶都表现出明显的机械各向异性行为。对于纤锌矿型GaN单晶,最大和最小弹性模量分别位于方向[001]和<111>上,而对于混锌型GaN单晶则分别位于<111>和<100>上。与弹性模量相比,两个GaN单晶的剪切模量具有完全相反的方向依赖性。但是,与弹性模量和剪切模量不同,这两个单晶的体模几乎各向同性,特别是对于闪锌矿型GaN。此外,在纤锌矿型GaN中,在包含[001]轴的平面上的泊松比是各向异性的,并且最大值是在垂直于[001]轴的方向上的0.31。对于掺锌氮化镓,在平面(100)和(111)上的泊松比是各向同性的,而在平面(110)上的泊松比则表现出显着的各向异性现象。另外,计算得到的纤锌矿和闪锌矿型GaN的德拜温度分别为641.8 K和620.2K。在300 K时,纤锌矿和闪锌矿的热容量分别为33.6和33.5 J mol -1 K -1 。最后,带隙位于两个晶体的G点,纤锌矿和闪锌矿GaN的带隙分别为3.62 eV和3.06 eV。在G点处,纤锌矿GaN中的导带的最低能量较大,导致带隙更宽。纤锌矿GaN的Ga和N原子之间的轨道杂化中的态密度更高,这表明更多的电子参与了纤锌矿GaN中的Ga-N离子键的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号