首页> 美国卫生研究院文献>ACS Omega >Surface Structure-Dependent Low Turn-On Electron Field Emission from Polypyrrole/TinOxide Hybrid Cathodes
【2h】

Surface Structure-Dependent Low Turn-On Electron Field Emission from Polypyrrole/TinOxide Hybrid Cathodes

机译:聚吡咯/锡对表面结构的依赖性低导通电子场发射氧化物混合阴极

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new surface structure-dependent cold cathode material capable of sustaining high electron emission current suitable for next-generation low turn-on field-emission devices. The low turn-on electric field for electron emission in the cathode materials is critical, which facilitates the low-power room-temperature operation, a key factor required by the industrial sector. We demonstrate the facile synthesis of polypyrrole (PPy)/tin oxide (SnO2)-based core–shell hybrid cold cathode materials for large area applications. The technique used here is based on a simple and economical method of surfactant-mediated polymerization. The coupled investigation of X-ray diffraction along with electron microscopy reveals the formation of rutile phase SnO2 nanoparticles of size ∼15 nm. These SnO2 nanoparticles act as nucleation sites for the growth of PPy nanofibers, resulting in encapsulated SnO2 nanoparticles in the PPy amorphous matrix. The coupling of spherical-shaped core–shell structures of PPy/SnO2 resulted into the particle train-like nanostructured form of the hybrid material. These core–shell structures formed the local p–n junction between the n-typeSnO2 (core) and p-type PPy (shell). The long chains ofthese p–n junctions in nanofibers result in the modificationof the electronic band structure of PPy, leading to a reduction inthe work function of the electrons. The significant surface structuralmodification in PPy/SnO2 causes a prominent reduction inthe turn-on electric field for electron emission in PPy/SnO2 nanocomposite (∼1.5 V/μm) as compared to the pure PPy(∼3.3 V/μm) without significant loss in current density(∼1 mA/cm2). The mechanism of improved field-emissionbehavior and advantages of using such hybrid nanomaterials as comparedto other composite nanomaterials have also been discussed in detail.
机译:我们提出了一种新的依赖于表面结构的冷阴极材料,该材料能够维持高电子发射电流,适用于下一代低导通场发射器件。阴极材料中电子发射的低导通电场至关重要,这有利于低功率室温操作,这是工业领域所需的关键因素。我们证明了适用于大面积应用的聚吡咯(PPy)/氧化锡(SnO2)基核壳混合冷阴极材料的简便合成。此处使用的技术基于表面活性剂介导的聚合的简单且经济的方法。 X射线衍射与电子显微镜的结合研究表明,形成了尺寸约15 nm的金红石相SnO2纳米颗粒。这些SnO2纳米颗粒充当PPy纳米纤维生长的成核位点,从而在PPy非晶态基质中封装了SnO2纳米颗粒。 PPy / SnO2的球形核-壳结构的耦合导致了杂化材料的颗粒状纳米结构形式。这些核-壳结构形成了n型之间的局部PN连接SnO2(核)和p型PPy(壳)。的长链纳米纤维中的这些p–n结导致改性PPy的电子能带结构,导致电子的功函数重要的表面结构PPy / SnO2的修饰会显着降低与纯PPy相比,PPy / SnO2纳米复合材料中电子发射的开启电场(〜1.5 V /μm)(〜3.3 V /μm),电流密度没有明显损失(〜1 mA / cm 2 )。改善场发射的机理使用这种杂化纳米材料的行为和优势还已经详细讨论了其他复合纳米材料的制备方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号