首页> 美国卫生研究院文献>Biophysical Journal >Alternating Carrier Models of Asymmetric Glucose Transport Violate the Energy Conservation Laws
【2h】

Alternating Carrier Models of Asymmetric Glucose Transport Violate the Energy Conservation Laws

机译:不对称葡萄糖转运的交替载体模型违反了能量守恒定律

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric “carrier” (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites () and slower unliganded “free” carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, ΔGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (), where R is the universal gas constant (8.314 Joules/M/K°), and T is the temperature, assumed here to be 300 K°, sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.
机译:具有高亲和力外部面向位点和低亲和力内部位点的交替访问转运蛋白将底物转运直接与未配体的不对称“载体”(C i )分布相关。当两种沐浴液都含有等摩尔浓度的配体时,底物-载体复合物的净流量为零时,需要较高比例的未配体低亲和力内部位点(),并且较慢的未配体“自由”载体从内到外的传递要比在相反方向上慢。但是,非配体载流子运动的不对称速率kij意味着能量ΔGcarrier= RT ln(koi / kio)= RT ln(C in / C out ) = RT ln(),其中R是通用气体常数(8.314焦耳/ M / K°),而T是温度(此处假定为300 K°)保持了不对称性。没有这种无效的假设,载流子路径周期性的约束,加上不对称配体亲和力和平衡时的等摩尔性是无法调和的,并且任何被动的不对称单转运蛋白或共转运蛋白模型系统(例如Na-葡萄糖共转运蛋白)都认为这个基本错误是站不住脚的。通过GLUT1进行葡萄糖转运,只有通过外部高亲和力和内部低亲和力固定位点之间的系列解离缔合反应发生配体转运,才能正确模拟与净配体进入相比更高的最大速率和净配体进入Km。与较低亲和力的位点相比,较低亲和力的位点的站点间转运速率更快,并且不需要其他能源即可保持平衡。类似的约束必须适用于共同运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号