首页> 美国卫生研究院文献>ACS AuthorChoice >MultiscaleFree Energy Simulations: An Efficient Methodfor Connecting Classical MD Simulations to QM or QM/MM Free EnergiesUsing Non-Boltzmann Bennett Reweighting Schemes
【2h】

MultiscaleFree Energy Simulations: An Efficient Methodfor Connecting Classical MD Simulations to QM or QM/MM Free EnergiesUsing Non-Boltzmann Bennett Reweighting Schemes

机译:多尺度自由能模拟:一种有效的方法用于将经典的MD模拟连接到QM或QM / MM免费能源使用Non-Boltzmann Bennett重加权方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Freeenergy differences are then calculated based on the QM or QM/MM energiesusing either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmannfree energy perturbation (NB-FEP). Both approaches are applied tocalculate relative and absolute solvation free energies in explicitand implicit solvent environments. Solvation free energy differences(relative and absolute) between ethane and methanol in explicit solventare used as the initial test case for QM-NBB. Next, implicit solventmethods are employed in conjunction with both QM-NBB and NB-FEP tocompute absolute solvation free energies for 21 compounds. These compoundsrange from small molecules such as ethane and methanol to fairly large,flexible solutes, such as triacetyl glycerol. Several technical aspectswere investigated. Ultimately some best practices are suggested forimproving methods that seek to connect MM to QM (or QM/MM) levelsof theory in FES.
机译:自由能模拟(FES)的可靠性受到两个因素的限制:(a)需要进行正确的采样;(b)所采用的计算方法的准确性。经典方法(例如力场)通常用于FES,并且存在无数挑战,其中参数化是一种原则。另一方面,无参数量子力学(QM)方法对于足够的采样在计算上往往过于昂贵。一种广泛使用的方法是方法的组合,其中两个最终状态之间的自由能差通过例如分子力学(MM)计算,而最终状态则通过更精确的方法(例如QM或混合QM / MM技术。在这里,我们报告了两种可以显着改善上述方案的新方法;着重于如何在MM和更精确的QM计算之间进行校正。首先,生成正确采样相关构象自由度的分子动力学轨迹。接下来,利用QM或QM / MM哈密顿量产生每个轨迹框架的势能。自由然后根据QM或QM / MM能量计算能量差使用非Boltzmann Bennett方法(QM-NBB)或非Boltzmann自由能扰动(NB-FEP)。两种方法都适用于计算显式的相对和绝对溶剂化自由能和隐式溶剂环境。溶剂自由能差异明确溶剂中乙烷和甲醇之间的(相对和绝对)被用作QM-NBB的初始测试用例。接下来,隐式溶剂方法与QM-NBB和NB-FEP结合使用以计算21种化合物的绝对溶剂化自由能。这些化合物从乙烷和甲醇等小分子到相当大的分子,柔性溶质,例如三乙酰基甘油。几个技术方面被调查了。最终建议一些最佳实践改进寻求将MM连接到QM(或QM / MM)级别的方法FES的理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号