首页> 美国卫生研究院文献>ACS AuthorChoice >Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited Fe(terpy)22+
【2h】

Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited Fe(terpy)22+

机译:纳秒级激发态的详细表征:X射线和光激发Fe(terpy)2 2+中五重态的理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scatteringdata clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorptionfine structure spectroscopy resolves the Fe–ligand bond-lengthvariations with unprecedented bond-length accuracy in time-resolvedexperiments. With ab initio calculations we determinewhy, in contrast to most related systems, one configurational modeis insufficient for the description of the low-spin (LS)–high-spin(HS) transition. We identify the electronic structure origin of thedifferences between the two possible quintet modes, and finally, weunambiguously identify the formed quintet state as 5E,in agreement with our theoretical expectations.
机译:理论预测表明,根据Fe 3dxy,3dxz和3dyz轨道的种群,光开关模型系统[Fe(terpy)2] 2 + 。这些 5 B2和 5 E五重奏在结构和分子性质上的差异非常小,对解决它们的实验提出了巨大的挑战。然而,为了更好地理解该系统的物理原理(可以导致设计出具有增强的光开关性能的新型分子),至关重要的是确定在光激发之后的跃迁中达到哪种高自旋态。五重态可以用短的激光脉冲制备,也可以用最先进的时间分辨X射线技术研究。在这里,我们报道了一组扩展的X射线光谱学和散射技术的应用,这些技术用于研究光激发后80 ps [Fe(terpy)2] 2 + 的五重态。高质量的X射线吸收,非共振发射和共振发射光谱以及X射线漫散射数据清楚地反映了[Fe(terpy)2] 2 + 分子的高自旋态的形成;而且,扩展了X射线吸收精细结构光谱解析了铁配体键长在时间分辨中具有前所未有的键长精度的变化实验。通过从头算起,我们确定为什么与大多数相关系统相比,一种配置模式不足以描述低旋转(LS)–高旋转(HS)转换。我们确定电子结构的起源两种可能的五重奏模式之间的差异,最后,我们明确地将形成的五重奏状态标识为 5 E,符合我们的理论期望。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号