首页> 美国卫生研究院文献>ACS AuthorChoice >Theoretical Study of the Charge Transfer Exciton BindingEnergy in Semiconductor Materials for Polymer:Fullerene-Based BulkHeterojunction Solar Cells
【2h】

Theoretical Study of the Charge Transfer Exciton BindingEnergy in Semiconductor Materials for Polymer:Fullerene-Based BulkHeterojunction Solar Cells

机译:电荷转移激子束缚的理论研究聚合物半导体材料中的能量:基于富勒烯的本体异质结太阳能电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent efforts and progress in polymer solar cell research have boosted the photovoltaic efficiency of the technology. This efficiency depends not only on the device architecture but also on the material properties. Thus, insight into the design of novel semiconductor materials is vital for the advancement of the field. This paper looks from a theoretical viewpoint into two of the factors for the design of semiconductor materials with applications to bulk heterojunction solar cells: the charge transfer exciton binding energy and the nanoscale arrangement of donor and acceptor molecules in blend systems. Being aware that the exciton dissociation of local excitons in charge transfer states initiates the charge generation process, the excited state properties of four oligomers (one donor-type: PEO–PPV; and three donor–acceptor-types: PTFB, PTB7, and PTB7–Th) and two fullerene derivatives ([60]PCBM and [70]PCBM), previously reported in the literature as having high electrical conductance, are studied. With such a study, the donor molecules, either of donor-type or donor–acceptor type, arescreened as candidates for [60]PCBM- and/or [70]PCBM-based bulk heterojunctions.The charge transfer energy and charge transfer exciton binding energyof suitable donor:acceptor bulk heterojunctions, some of them notyet fabricated, are studied. Further, the charge transfer excitonbinding energies of [60]PCBM- and [70]PCBM-based blends are compared.A combination of molecular dynamics simulations with calculationsbased on Kohn–Sham density functional theory (KS-DFT) and itstime-dependent extension (KS-TDDFT) is used. An important featureof this work is that it incorporates the effect of the environmentof the quantum chemical system in KS-DFT or KS-TDDFT calculationsthrough a polarizable discrete reaction field (DRF). Our predictionsin terms of the influence of the nanoscale arrangement of donor andacceptor molecules on the performance of organic solar cells indicatethat bulk heterojunction morphologies for donor–acceptor-typeoligomers lead to their lowest excited states having charge transfercharacter. Further, we find that in terms of favorable charge transferexciton binding energy, the PTB7–Th:[70]PCBM blends outperformthe other blends.
机译:聚合物太阳能电池研究的最新努力和进展提高了该技术的光伏效率。这种效率不仅取决于器件架构,还取决于材料特性。因此,洞察新型半导体材料的设计对于该领域的发展至关重要。本文从理论的角度考察了半导体材料设计应用于块状异质结太阳能电池的两个因素:电荷转移激子结合能以及混合体系中施主和受主分子的纳米级排列。意识到电荷转移状态中的局部激子的激子解离会引发电荷生成过程,四种低聚物(一种供体类型:PEO–PPV;三种供体–受体类型:PTFB,PTB7和PTB7)的激发态性质。 -Th)和两个富勒烯衍生物([60] PCBM和[70] PCBM),以前在文献中被报道具有高电导率,对此进行了研究。通过这样的研究,供体分子或供体-受体类型的供体分子都是被筛选为基于[60] PCBM和/或基于[70] PCBM的本体异质结的候选对象。电荷转移能和电荷转移激子结合能合适的供体:受体本体异质结,其中一些不尚未制造,正在研究中。此外,电荷转移激子比较了[60] PCBM和[70] PCBM混合物的结合能。分子动力学模拟与计算的结合基于Kohn–Sham密度泛函理论(KS-DFT)及其使用时间相关的扩展(KS-TDDFT)。重要特征这项工作是因为它融合了环境的影响KS-DFT或KS-TDDFT计算中的量子化学系统通过可极化的离散反应场(DRF)。我们的预测就供体的纳米级排列的影响而言,受体分子对有机太阳能电池性能的指示供体-受体类型的大量异质结形态低聚物导致其具有电荷转移的最低激发态字符。此外,我们发现在有利的电荷转移方面激子结合能,PTB7–Th:[70] PCBM的性能优于大分子其他混合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号