首页> 中文期刊> 《世界中医药杂志(英文版)》 >Effects of Ginsenoside Rb1 on Skeletal Muscle Insulin Resistance and Adenosine Monophosphate-activated Protein Kinase Signaling Pathway in Obese Mice

Effects of Ginsenoside Rb1 on Skeletal Muscle Insulin Resistance and Adenosine Monophosphate-activated Protein Kinase Signaling Pathway in Obese Mice

         

摘要

Objectives:The objective of the study is to observe the effects of ginsenoside Rbl on indexes of body weight,body composition,blood lipid,skeletal muscle endurance,and insulin sensitivity in obese mice,probe into its pharmacological action,and further explore its effects on adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in skeletal muscle.Materials and Methods:Eight-week-old C57BL/6J mice were fed with high-fat diet for 12 weeks to establish obese mouse model.The model-establishment obese mice were randomly divided into three groups including model control group,metformin group,and ginsenoside Rb 1 group.In the normal control group,normal diet was administered.The intervention period was 8 weeks.Body weight and food intake of the mice were measured regularly every week.The treadmill test was performed at weeks 3 and 7,and the oral glucose tolerance test was carried out at weeks 4 and 8.Body composition of the mice was detected by applying NMR Animal Body Composition Analyzer at week 8.Four parameters of blood lipids and free fatty acid (FFA)levels were detected.The mRNA expression of AMPKα and proliferator-activated receptor gamma coactivator-1 α (PGC-1 α) in skeletal muscle was examined by real-time fluorescence quantitative polymerase chain reaction,and the influence of ginsenoside Rb 1 on protein expression ofAMPKα,p-AMPKα,and PGC-1 α was observed by western blotting.Results:The body weight (since the 5th week of drug administration)and food intake of the mice in the ginsenoside Rb1 group were significantly lower than those in the model control group (P < 0.05) in a time-dependent manner.Ginsenoside Rb 1 could significantly reduce the levels of triglyceride and low-density lipoprotein cholesterol,while increase the high-density lipoprotein cholesterol level (P < 0.05).In addition,ginsenoside Rbl could reduce the serum FFA level (P < 0.05).After the administration of ginsenoside Rb 1 for 8 weeks,the body fat mass of obese mice decreased and the lean mass increased (P < 0.05).The skeletal muscle endurance and the oral glucose tolerance of the obese mice improved using ginsenoside Rbl.At the molecular level,ginsenoside Rb1 could up-regulate the mRNA and protein expression of AMPKα in skeletal muscle,and increase the content of p-AMPK protein significantly (P < 0.01).At the same time,the mRNA and protein level of PGC-1α was also un-regulated,correspondingly (P < 0.01).Conclusion:Ginsenoside Rb1 exerts effects on reducing body weight,decreasing blood lipid levels,enhancing the skeletal muscle endurance,and increasing the insulin sensitivity in obese mice by activating the related proteins in AMPK signaling pathway in skeletal muscle.

著录项

  • 来源
    《世界中医药杂志(英文版)》 |2019年第1期|42-49|共8页
  • 作者单位

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    Department of Endocrinology, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

    Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA;

    School of Chinese Medicine, Beijing University of Chinese Medicine, South Area of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号