首页> 中文期刊> 《中国有色金属学报:英文版》 >Numerical simulation of solidification process of Sn-3.5Pb hollow billet with stirring magnetic field

Numerical simulation of solidification process of Sn-3.5Pb hollow billet with stirring magnetic field

         

摘要

In order to study the effect of the stirring flow on the grain diameter and solute concentration of hollow billet, the couple model of the two-phase solidification and electromagnetic field was built to simulate the solidification process of Sn-3.5%Pb hollow billet with the traveling magnetic field and rotating magnetic field. The effects of different kinds of flows on the temperature field, concentration field and grain diameter of molten metal during solidification were analysed. The results show that, there are different flow patterns in the molten metal induced by the traveling magnetic field and rotating magnetic field. Both flows can refine the grains in the hollow billet because of change of the temperature gradient and cooling rate of molten metal. The bigger the stirring velocity is,the smaller the grain diameter. Both flows can result in the macro-segregation in the hollow billet because of the non-homogeneous flows. The bigger the stirring velocity, the more serious the macro-segregation of the hollow billet. So, the stirring intensity should be controlled to acquire the high quality hollow billet.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号