首页> 中文期刊> 《农业工程学报》 >基于改进多目标进化算法的温室环境优化控制

基于改进多目标进化算法的温室环境优化控制

         

摘要

A greenhouse environment control system plays a decisive role in greenhouse production processes and is a complex system to control. This paper provides an overview of a greenhouse control system and control technologies. We investigated the issue of a greenhouse climate control system based on temperature and humidity, and formulated a greenhouse climate dynamic model. The control strategy was presented for the dynamic model made use of conventional Proportional Integral and Derivative (PID) control algorithms in which it combined with an modified multi-objective evolutionary algorithm (MNSEA-II) based on NSGA-II. In MNSEA-II, mixed mutation strategy and local search strategy were utilized to tune two PID controller parameters, and the integrated time square error (ITSE) was considered as one of performance criteria. The mixed mutation strategy based on game theory could utilize adaptively the advantages of a different mutation operator to maintain the globe search capacity of population for a diversity of Pareto solutions, and the local search strategy could speed the convergence of algorithms to achieve more precise solutions. The mixed mutation strategy and the local search strategy could obtain an equilibrium between the diversity and precision of Pareto solutions. An evolutionary optimization process was employed to approximate the set of Pareto solutions, which was used to tune PID controller parameters to achieve good control performance. The tuning scheme has been tested for greenhouse climate control by minimizing ITSE and control increment or rate in a simulation system. Simulation results showed the effectiveness and usability of the proposed method for step responses. The obtained gains were applied in PID controllers and could achieve good control performance such as small overshoot, fast settling time, and less rise time and steady state error. The proposed optimization method offers an effective way to implement simple but robust solutions providing a good reference tracking performance in a closed loop, and the non-dominated Pareto optimal solutions have better distribution and faster convergence at the same time.%该文围绕温室环境控制问题,以温湿度2个主要环境因子为研究对象,建立了温室环境动态模型。设计1种基于改进的非支配排序多目标进化算法(modified non-dominated sorting evolutionary algorithm,MNSEA-II)的双比例积分微分(proportional integral derivative,PID)控制器的多输入、输出温室控制系统,以误差平方矩的积分型(integrated time square error,ITSE)为性能指标,使用多目标进化算法对其确立的目标函数进行寻优,求出 Pareto 最优解,进而对PID控制器的参数进行整定,使系统获得良好的控制性能。本文以Matlab/Simulink为仿真环境,对此温室控制系统进行了仿真研究。结果表明了温室模型的合理性和多目标进化算法优化的PID控制方法的有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号