首页> 中文期刊> 《中国科学》 >A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau

A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau

         

摘要

According to the boundary layer observations of three stations (Garze, Damxung and Qamdu) and relevant earth satellite, radiosonde and surface observations during the intensive observational period (IOP) of the second Tibetan (Qinghai-Xizang) Plateau Experiment of atmospheric science (TIPEX), the land-air physical process and dynamic model on the Tibetan Plateau were comprehensively analyzed in this study. The dynamic characteristics of boundary layer and the rules of turbulent motion on the plateau were illustrated. The characteristics of distributions of wind speed and direction with mutiple-layer structure and deep convective mixed layer on the plateau, the strong buoyancy effect in turbulent motion on the plateau on which the air density is obviously smaller than on the plain, and the Ekman spiral and its dynamic pump effect of the plateau deep boundary layer have been found. The local static distribution of water vapor and the horizontal advection of water vapor in the plateau boundary layer were studied. The abnomal thermodynamic structure on the plateau surface and boundary layer, including the plateau strong radiation phenomenon and strong heating source characteristics of the middle plateau, was also analyzed. The authors synthesized the above dynamic and thermodynamic structures of both surface and boundary layers on the plateau and posed the comprehensive physical model of the turbulence and convective mixture mechanism on the plateau boundary layer. The characteristics of formation, development and movement for convective cloud cluster over the plateau influencing floods in the Yangtze River area of China were studied. The conceptual model of dynamic and thermodynamic structures of turbulent motion and convective plume related to the frequent occurrence of "pop-corn-like" cloud system is given as well.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号