JET and the Physics Basis of ITER

         

摘要

JET has made unique contributions to the physics basis of ITER by virtue of its ITER-like geometry,large plasma size and D-T capability.The paper discusses recent JET results and their implications for ITER in the areas of standard ELMy H-mode,D-T operation and advanced tokamak modes.In ELMy H-mode the separation of plasma energy into core and pedestal contributions shows that core confinement scales like gyroBohm transport.High triangularity has a beneficial effect on confinement and leads to an integrated plasma performance exceeding the ITER Q=10 reference case.A revised type I ELM scaling predicts acceptable ELM energy losses for ITER,while progress in physics understanding of NTMs shows how to control them in ITER.The D-T experiments of 1997 have validated ICRF scenarios for heating ITER/a reactor and identified ion minority schemes (e.g.(^3He)DT) with strong ion heating.They also show that the slowing down of alpha particles is classical so that the self-heating by fusion alphas should cause no unexpected problems.With the Pellet Enhanced Performance mode of 1988,JET has produced the first advanced tokamak mode,with peaked pressure profiles sustained by reversed magnetic shear and strongly reduced transport.More recently,LHCD has provided easy tuning of reversed shear and reliable access to ITBs.Improved physics understanding shows that rational q-surfaces play a key role in the formation and development of ITBs.The demonstration of real time feedback control of plasma current and pressure profiles opens the path towards fully controlled steady-state tokamak plasmas.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号