首页> 中文期刊> 《等离子体科学和技术:英文版》 >Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration

Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration

         

摘要

A combined method of granular activated carbon(GAC) adsorption and bipolar pulse dielectric barrier discharge(DBD) plasma regeneration was employed to degrade phenol in water.After being saturated with phenol,the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters.The results showed that different peak voltages,air flow rates,and GAC content can affect phenol decomposition and its major degradation intermediates,such as catechol,hydroquinone,and benzoquinone.The higher voltage and air support were conducive to the removal of phenol,and the proper water moisture of the GAC was 20%.The amount of H2 O2 on the GAC was quantitatively determined,and its laws of production were similar to phenol elimination.Under the optimized conditions,the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%.Also,a possible degradation mechanism was proposed based on the HPLC analysis.Meanwhile,the regeneration efficiency of the GAC was improved with the discharge treatment time,which attained 88.5% after 100 min of DBD processing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号