首页> 中文期刊> 《石油科学:英文版》 >Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing

Numerical simulation of hydraulic fracture propagation in tight oil reservoirs by volumetric fracturing

         

摘要

Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clusters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oilfield. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress difference, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume(SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号