首页> 中文期刊> 《土壤圈:英文版》 >Changes in Phosphorus Fractions, pH, and Phosphatase Activity in Rhizosphere of Two Rice Genotypes

Changes in Phosphorus Fractions, pH, and Phosphatase Activity in Rhizosphere of Two Rice Genotypes

         

摘要

A rhizobox experiment with two phosphorus (P) treatments, zero-P (0 mg P kg-1) and plus-P (100 mg P kg-1) as Ca(H2PO4)2·H2O, was conducted to study the chemical and biochemical properties in the rhizosphere of two rice genotypes (cv. Zhongbu 51 and Pembe) different in P uptake ability and their relationship with the depletion of soil P fractions. Plant P uptake, pH, phosphatase activity, and soil P fractions in the rhizosphere were measured. Both total dry weight and total P uptake of Pembe were significantly (P < 0.05) higher than those of Zhongbu 51 in the zero-P and plus-P treatments. Significant depletions of resin-Pi, NaHCO3-Pi, NaHCO3-Po, and NaOH-Pi, where Pi stands for inorganic P and Po for organic P, were observed in the rhizosphere of both Zhongbu 51 and Pembe under both P treatments. Pembe showed a greater ability than Zhongbu 51 in depleting resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, and NaOH- Po in the rhizosphere. HCl-Pi and residual-P were not depleted in the rhizosphere of both genotypes, regardless of P treatments despite significant acidification in the rhizosphere of Pembe under zero-P treatment. Higher acid phosphatase (AcPME) activity and alkaline phosphatase (AlPME) activity were observed in the rhizosphere of both Zhongbu 51 and Pembe compared to the corresponding controls without plant. AcPME activity was negatively (P < 0.01) correlated to NaHCO3-Po concentration in the rhizosphere of both Zhongbu 51 and Pembe, suggesting that AcPME was associated with the mineralization of soil organic P.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号