首页> 中文期刊> 《纳微快报:英文版》 >Plasma Triggered Grain Coalescence for Self-Assembly of 3D Nanostructures

Plasma Triggered Grain Coalescence for Self-Assembly of 3D Nanostructures

         

摘要

Grain coalescence has been applied in many areas of nanofabrication technology, including modification of thinfilm properties, nanowelding, and self-assembly of nanostructures. However, very few systematic studies of selfassembly using the grain coalescence, especially for threedimensional(3D) nanostructures, exist at present. Here, we investigate the mechanism of plasma triggered grain coalescence to achieve the precise control of nanoscale phase and morphology of the grain coalescence induced by exothermic energy. Exothermic energy is generated through etching a silicon substrate via application of plasma. By tuning the plasma power and the flow rates of reactive gases, different etching rates and profiles can be achieved, resulting in various morphologies of grain coalescence. Balancing the isotropic/anisotropic substrate etching profile and the etching rate makes it possible to simultaneously release 2D nanostructures from the substrate and induce enough surface tension force,generated by grain coalescence, to form 3D nanostructures.Diverse morphologies of 3D nanostructures have been obtained by the grain coalescence, and a strategy to achieve self-assembly, resulting in desired 3D nanostructures, has been proposed and demonstrated.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号