首页> 中文期刊> 《分子植物(英文版)》 >The LysM Receptor-Like Kinase LysM RLK1 Is Required to Activate Defense and Abiotic-Stress Responses Induced by Overexpression of Fungal Chitinases in Arabidopsis Plants

The LysM Receptor-Like Kinase LysM RLK1 Is Required to Activate Defense and Abiotic-Stress Responses Induced by Overexpression of Fungal Chitinases in Arabidopsis Plants

         

摘要

Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene,known to play a critical role in signaling defense responses induced by exogenous chitin.Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity,heavy-metal stresses,and Botrytis cinerea infection.Resistant lines,overexpressing fungal chitinases at different levels,were outcrossed to lysm rlk1 mutants.Independent homozygous hybrids lost resistance to biotic and abiotic stresses,despite enhanced chitinase activity.Expression analysis of 270 stress-related genes,including those induced by reactive oxygen species (ROS) and chitin,revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation.These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants.

著录项

  • 来源
    《分子植物(英文版)》 |2012年第5期|1113-1124|共12页
  • 作者单位

    Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany;

    Department of Plant Pathology and Microbiology, The Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;

    Department of Plant Pathology and Microbiology, The Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;

    Department of Plant Science, Tel Aviv University, Tel Aviv 69978, Israel;

    Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany;

    Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany;

    University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straβe 24-25, Haus 20, 14476 Potsdam-Golm, Germany;

    Department of Plant Science, Tel Aviv University, Tel Aviv 69978, Israel;

    Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany;

    Department of Plant Pathology and Microbiology, The Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号