首页> 中文期刊> 《光:科学与应用(英文版)》 >Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas

Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas

         

摘要

Coupling nano-emitters to plasmonic antennas is a key milestone for the development of nanoscale quantum light sources.One challenge,however,is the precise nanoscale positioning of the emitter in the structure.Here,we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control.By exploiting the properties of metal–insulator–metal structures at the nanoscale,the fabricated single-emitter antenna exhibits a very high-Purcell factor(>72)and a brightness enhancement of a factor of 70.Due to the unprecedented quenching of Auger processes and the strong acceleration of the multiexciton emission,more than 4 photons per pulse can be emitted by a single quantum dot,thus increasing the device yield.Our technology can be applied to a wide range of photonic nanostructures and emitters,paving the way for scalable and reliable fabrication of ultracompact light sources.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号