首页> 中文期刊> 《光:科学与应用(英文版)》 >Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers

Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers

         

摘要

Photoacoustic microscopy(PAM)has become a premier microscopy tool that can provide the anatomical,functional,and molecular information of animals and humans in vivo.However,conventional PAM systems suffer from limited temporal and/or spatial resolution.Here,we present a fast PAM system and an agent-free localization method based on a stable and commercial galvanometer scanner with a custom-made scanning mirror(L-PAM-GS).This novel hardware implementation enhances the temporal resolution significantly while maintaining a high signal-to-noise ratio(SNR).These improvements allow us to photoacoustically and noninvasively observe the microvasculatures of small animals and humans in vivo.Furthermore,the functional hemodynamics,namely,the blood flow rate in the microvasculature,is successfully monitored and quantified in vivo.More importantly,thanks to the high SNR and fast B-mode rate(500 Hz),by localizing photoacoustic signals from captured red blood cells without any contrast agent,unresolved microvessels are clearly distinguished,and the spatial resolution is improved by a factor of 2.5 in vivo.LPAM-GS has great potential in various fields,such as neurology,oncology,and pathology.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号