首页> 中文期刊> 《光:科学与应用(英文版)》 >Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector

Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector

         

摘要

The need for miniaturized,fully integrated semiconductor lasers has stimulated significant research efforts into realizing unconventional configurations that can meet the performance requirements of a large spectrum of applications,ranging from communication systems to sensing.We demonstrate a hybrid,silicon photonicscompatible photonic crystal(PhC)laser architecture that can be used to implement cost-effective,high-capacity light sources,with high side-mode suppression ratio and milliwatt output output powers.The emitted wavelength is set and controlled by a silicon PhC cavity-based reflective filter with the gain provided by a Ⅲ–Ⅴ-based reflective semiconductor optical amplifier(RSOA).The high power density in the laser cavity results in a significant enhancement of the nonlinear absorption in silicon in the high Q-factor PhC resonator.The heat generated in this manner creates a tuning effect in the wavelength-selective element,which can be used to offset external temperature fluctuations without the use of active cooling.Our approach is fully compatible with existing fabrication and integration technologies,providing a practical route to integrated lasing in wavelength-sensitive schemes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号