首页> 中文期刊> 《浙江大学学报(英文版)A辑:应用物理与工程》 >Calculation method of ship collision force on bridge using artificial neural network

Calculation method of ship collision force on bridge using artificial neural network

         

摘要

Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号