首页> 中文期刊> 《浙江大学学报:农业与生命科学版》 >Use of Hypocrea jecorina (anamorph Trichoderma reesei) as a model system for Trichoderma biocontrol of Pythium blight identifies new targets for genetic strain improvement

Use of Hypocrea jecorina (anamorph Trichoderma reesei) as a model system for Trichoderma biocontrol of Pythium blight identifies new targets for genetic strain improvement

         

摘要

Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T. atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as Trichoderma is concerned, molecular genetic methods and tools are most advanced in H. jecorina, and its genome has recently been fully sequenced, thus making this taxon a model organism for the genus. Here we will demonstrate that H. jecorina is able to antagonize plant pathogenic fungi in plate confrontation tests, and can protect tomato and cucumber plants against Pythium ultimum blight. Using this as a model case, we made use of available H. jecorina mutants to investigate (a) whether carbon catabolite repression via the Cre1-regulator protein has an impact on biocontrol, and (b) whether cellulase gene expression is necessary for biocontrol of P. ultimum. In the first case, plate confrontation tests and in planta experiments yielded opposite results, i.e. while a Cre1 mutant was more active in antagonization of fungi on plates, the survival rates of P. ultimum-inoculated cucumber plants was lower than with the H. jecorina wild-type strain. Mutants of H. jecorina, unable to form cellulases, were still able to antagonize fungi on plates and provided similar protection of tomatos against P. ultimum as the wild type, indicating that the pronounced biocontrol ability of H. jecorina against fungi with cellulose-containing cell-walls is not due to its high cellulolytic activity. A strain disrupted in the light-modulator gene envoy (Schmoll et al., ms submitted) exhibited in planta biocontrol activity strongly exceeding that of the wild-type strain, thereby providing a first link between Trichoderma biocontrol and light. In view of the numerous other metabolic and regulatory mutants of H. jecorina available, we suggest that this fungus should increasingly be used in basic studies on the biochemistry and genetics of biocontrol.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号