首页> 中文期刊> 《岩石力学与岩土工程学报:英文版》 >An improved specimen preparation method for marine shallow gasbearing sand sediments and its validations

An improved specimen preparation method for marine shallow gasbearing sand sediments and its validations

         

摘要

Instabilities of shallow gas-charged seabed are potential geological hazards in ocean engineering.In practice,the conventional field sampling techniques failed to obtain undisturbed gas-bearing sediments from the seabed for laboratory mechanical testing because of sensitive gas exsolution and escape from sediments.However,preparation of representative remoulded gas-charged specimens is a challenging issue,because it is rather difficult to quantitatively control the gas content and obtain uniform distribution of gas bubbles within the specimen.Given the above problems,this work proposes a reliable approach to reconstitute the high-saturation specimen of gas-charged sediments in the laboratory by an improved multifunction integrated triaxial apparatus(MITA).This apparatus is developed based on an advanced stress path triaxial system by introducing a temperature-controlled system and a wavemonitoring system.The temperature-controlled system is used to accurately mimic the in situ environments of sediments in the seabed.The wave-monitoring system is utilized to identify exsolution point of free gas and examine the disturbance of gas to specimens during gas exsolution.The detailed procedure of gassy specimen preparation is introduced.Then,the quality of prepared specimens using our improved apparatus is validated by the high-resolution micro-X-ray computed tomography(mCT)scanning test,from which bubble occurrence and size distribution within the gassy sand specimen can be obtained;and preliminary mechanical tests on gassy sand specimens with various initial saturation degrees are performed.The proposed specimen preparation procedure succeeds in proving the postulated occurrence state of gas bubbles in coarse-grained sediments and accurately controlling the gas content.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号