首页> 外文期刊>船舶与海洋工程学报(英文版) >Development of Cubic Bezier Curve and Curve-Plane Intersection Method for Parametric Submarine Hull Form Design to Optimize Hull Resistance Using CFD
【24h】

Development of Cubic Bezier Curve and Curve-Plane Intersection Method for Parametric Submarine Hull Form Design to Optimize Hull Resistance Using CFD

机译:三次贝塞尔曲线和曲线-平面相交方法的开发,用于参数化潜艇船体设计,以利用CFD优化船体阻力

获取原文
获取原文并翻译 | 示例
       

摘要

Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum Ct was obtained. The calculated difference in Ct values between the initial submarine and the optimum submarine is around 0.26%, with the Ct of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (rt) is smaller than that of the initial shape.
机译:优化分析和计算流体动力学(CFD)已同时应用,其中参数模型在寻找最优解中起着重要作用。但是,很难为具有不规则曲线的复杂形状(例如潜艇船体)创建参数模型。在这项研究中,三次贝塞尔曲线和曲线-平面相交方法用于生成参数化潜艇船体形式的实体模型,其中考虑了三个输入参数:机头半径,机尾半径和长高船体比(L / H )。应用程序接口(API)脚本也用于在ANSYS DesignModeler中编写代码。结果表明,通过改变输入参数可以生成海底形状。给出了一个示例,说明了所提出的方法如何成功地应用于船体阻力优化情况。选择了中型潜艇的参数化设计进行修改。首先,预先使用CFD对原始潜艇模型进行了分析。然后,使用响应表面图,获得一些具有最小船体阻力系数的候选最佳设计。此外,还采用了目标驱动优化(GDO)中的优化方法,以找到具有最小船体阻力系数(Ct)的潜艇船体形式。获得最小的Ct。初始潜艇和最佳潜艇之间Ct值的计算差异约为0.26%,初始潜艇和最佳潜艇的Ct分别为0.001 508 26和0.001 504 29。结果表明,最佳潜艇船体形状比初始潜艇形状具有更高的机头半径(rn)和更高的L / H,而尾部半径(rt)小于初始潜艇形状。

著录项

  • 来源
    《船舶与海洋工程学报(英文版)》 |2015年第4期|399-405|共7页
  • 作者单位

    Department of Naval Architecture, Diponegoro University, Semarang 50275, Indonesia;

    Department of Naval Architecture, Diponegoro University, Semarang 50275, Indonesia;

    Department of Naval Architecture, Diponegoro University, Semarang 50275, Indonesia;

    Department of Naval Architecture and Systems Marine Engineering, Pukyong National University, Busan 48513, South Korea;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号