首页> 中文期刊> 《钢铁研究学报:英文版》 >Computer-Aided Design of Some Advanced Steels and Cemented Carbides

Computer-Aided Design of Some Advanced Steels and Cemented Carbides

         

摘要

Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M=Ti, Ta, Nb) systems and Co-V-C system were modeled. Solution parameters and thermodynamic properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号