首页> 中文期刊> 《钢铁研究学报:英文版》 >Simulation of Case Depth of Cementation Steels According to Fick’s Laws

Simulation of Case Depth of Cementation Steels According to Fick’s Laws

         

摘要

The carburizing process is the enrichment of the depth of low carbon steels with carbon. It leads to samples with a combination of high surface hardness and high core toughness and to an impact strength that is required for many engineering parts. The material studied is a low carbon steel. The carbon content is little in this type of steel (wC=0.2%). The calculation of case depth is very important for cementation steels that are hardened in the carburizing process. The effective case depth is defined as the perpendicular distance from the surface to a place at which the hardness is HV 550. Nowadays, a great number of studies have been carried out on the simulation of effective case depth, but no studies have been conducted to determine the numerical relation between the total case depth on one hand and the carburizing time and the effective case depth on the other hand. The steel specimens were subjected to graphite powder. Then, they were heat treated at 925 ℃ for about 3, 5, 8 and 12 h, respectively. Then, these parts were quenched in oil. To determine the effective case depth, the microhardness test was performed on the cross-section of specimens. Plotting the case depth vs carburizing time, the required conditions for obtaining the specified case depth were determined. Also, the comparison between the case depths in numerical solution and the actual position in pack carburizing was performed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号